Advertisement

Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints

  • Fabian WeinEmail author
  • Manfred Kaltenbacher
  • Michael Stingl
Research Paper

Abstract

Vibrational piezoelectric energy harvesters are devices which convert ambient vibrational energy into electric energy. Here we focus on the common cantilever type in which an elastic beam is sandwiched between two piezoelectric plates. In order to maximize the electric power for a given sinusoidal vibrational excitation, we perform topology optimization of the elastic beam and tip mass by means of the SIMP approach, leaving the piezoelectric plates solid. We are interested in the first and especially second resonance mode. Homogenizing the piezoelectric strain distribution is a common indirect approach increasing the electric performance. The large design space of the topology optimization approach and the linear physical model also allows the maximization of electric performance by maximizing peak bending, resulting in practically infeasible designs. To avoid such problems, we formulate dynamic piezoelectric stress constraints. The obtained result is based on a mechanism which differs significantly from the common designs reported in literature.

Keywords

Topology optimization Energy harvester Stress constraints 

Notes

Acknowledgements

The authors from the University of Erlangen-Nuremberg gratefully acknowledge the funding within the framework of its ’Excellence Initiative’ for the Cluster of Excellence ’Engineering of Advanced Materials’.

References

  1. Albach T, Sutor A, Lerch R (2009) Elektromechanischer Energiewandler auf Basis eines piezokeramischen Biegebalkens. TM Tech Mess 76(3):112–121CrossRefGoogle Scholar
  2. Anton S, Sodano H (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1–R21CrossRefGoogle Scholar
  3. Bendsöe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1:193–202CrossRefGoogle Scholar
  4. Bendsöe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224zbMATHCrossRefGoogle Scholar
  5. Bendsöe MP, Sigmund O (2003) Topology optimization: theory, method and applications, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidisc Optim 36(2):125–141MathSciNetCrossRefGoogle Scholar
  7. Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459zbMATHCrossRefGoogle Scholar
  8. Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Multidisc Optim 13(4):258–266CrossRefGoogle Scholar
  9. De Marqui Junior C, Erturk A, Inman D (2009) An electromechanical finite element model for piezoelectric energy harvester plates. J Sound Vib 327(1–2):9–25CrossRefGoogle Scholar
  10. Dietl J, Garcia E (2010) Beam shape optimization for power harvesting. J Intel Mat Syst Str 21(6):633CrossRefGoogle Scholar
  11. Dühring M, Jensen J, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317(3–5):557–575CrossRefGoogle Scholar
  12. Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478zbMATHCrossRefGoogle Scholar
  13. Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, pp 1501–1509Google Scholar
  14. Erturk A, Inman D (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct 17:065,016Google Scholar
  15. Erturk A, Tarazaga P, Farmer J, Inman D (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131:011,010 (11 pp)CrossRefGoogle Scholar
  16. Gill P, Murray W, Saunders M (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006MathSciNetzbMATHCrossRefGoogle Scholar
  17. Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromechanics Microengineering 18:104,013CrossRefGoogle Scholar
  18. Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254zbMATHCrossRefGoogle Scholar
  19. Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B 22(6):1191–1198CrossRefGoogle Scholar
  20. Kaltenbacher M (2007) Numerical simulation of mechatronic sensors and actuators, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Kočvara M, Stingl M (2007) Free material optimization: towards the stress constraints. Struct Multidisc Optim 33(4–5):323–335CrossRefGoogle Scholar
  22. Liao Y, Sodano H (2008) Model of a single mode energy harvester and properties for optimal power generation. Smart Mater Struct 17:065,026Google Scholar
  23. Nakasone P, Kiyono C, Silva ECN (2008) Design of piezoelectric sensors, actuators, and energy harvesting devices using topology optimization. In: Proceedings of SPIE, SPIE, vol 6932, p 69322WGoogle Scholar
  24. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41:1417–1434MathSciNetzbMATHCrossRefGoogle Scholar
  25. Renno J, Daqaq M, Inman D (2009) On the optimal energy harvesting from a vibration source. J Sound Vib 320(1–2):386–405CrossRefGoogle Scholar
  26. Rupitsch SJ, Lerch R (2009) Inverse method to estimate material parameters for piezoceramic disc actuators. Appl Phys, A Mater 97(4):735–740CrossRefGoogle Scholar
  27. Rupp CJ, Evgrafov A, Maute K, Dunn ML (2009) Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J Intel Mat Syst Str 20(16):1923–1939CrossRefGoogle Scholar
  28. Schury F, Stingl M, Wein F (2012) Slope constrained material design. Struct Multidisc Optim 46(6):813–827. doi: 10.1007/s00158-012-0795-3 MathSciNetCrossRefGoogle Scholar
  29. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4):401–424CrossRefGoogle Scholar
  30. Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc, Math Phys Eng Sci 361(1806):1001–1019MathSciNetzbMATHCrossRefGoogle Scholar
  31. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16:68–75CrossRefGoogle Scholar
  32. Wang J, Ostergaard D, Inc A, Canonsburg P (1999) A finite element-electric circuit coupled simulation method forpiezoelectric transducer. In: Proceedings IEEE ultrasonics symposium, vol 2Google Scholar
  33. Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784CrossRefGoogle Scholar
  34. Wein F (2011) Topology optimization of smart piezoelectric transducers. PhD thesis. University Erlangen-Nuremberg, GermanyGoogle Scholar
  35. Wein F, Kaltenbacher M, Leugering G, Bänsch E, Schury F (2009) Topology optimization of a piezoelectric-mechanical actuator with single- and multiple-frequency excitation. Int J Appl Electromagn Mech 30(3–4):201–221Google Scholar
  36. Wein F, Kaltenbacher M, Kaltenbacher B, Leugering G, Bänsch E, Schury F (2011) On the effect of self-penalization of piezoelectric composites in topology optimization. Struct Multidisc Optim 43(3):405CrossRefGoogle Scholar
  37. Zheng B, Chang CJ, Gea HC (2008) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidisc Optim 38(1):17–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabian Wein
    • 1
    Email author
  • Manfred Kaltenbacher
    • 2
  • Michael Stingl
    • 1
  1. 1.Applied Mathematics 2, Cluster of Excellence ‘Engineering of Advanced Materials’University of Erlangen-NurembergErlangenGermany
  2. 2.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations