Advertisement

Structural and Multidisciplinary Optimization

, Volume 46, Issue 6, pp 813–827 | Cite as

Slope constrained material design

  • Fabian SchuryEmail author
  • Michael Stingl
  • Fabian Wein
Research Paper

Abstract

We investigate a class of constrained inverse homogenization problems. The complexity of the topological solution is restricted using slope constraint regularization. We show existence of the solution for the inverse optimization problem in function space and outline a converging approximation scheme. We demonstrate how a proper numerical implementation can lead to a stable material design approach. We finally describe results for a comprehensive set of numerical test cases.

Keywords

Slope constraints Inverse homogenization Topology optimization SIMP 

Notes

Acknowledgements

We would like to thank the reviewers for their valuable comments, which helped to improve the manuscript.

The authors gratefully acknowledge the support of the Cluster of Excellence ‘Engineering of Advanced Materials’ at the University of Erlangen-Nuremberg, which is funded by the German Research Foundation (DFG) within the framework of its ‘Excellence Initiative’.

References

  1. Allaire G (2001) Shape optimization by the homogenization method. Springer, BerlinGoogle Scholar
  2. Allaire G (2007) Conception optimale de structures. Springer, BerlinzbMATHGoogle Scholar
  3. Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Dif 1:55–69MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1:193–202Google Scholar
  5. Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, BerlinGoogle Scholar
  6. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRefGoogle Scholar
  7. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, method and applications, 2nd edn. Springer, BerlinGoogle Scholar
  8. Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8(4):351–385MathSciNetzbMATHCrossRefGoogle Scholar
  9. Bourdin B (2001) Filters in topology optimization. Int J Numer Meth Eng 50(9):2143–2158MathSciNetzbMATHCrossRefGoogle Scholar
  10. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Method Appl M 190(26–27):3443–3459zbMATHCrossRefGoogle Scholar
  11. Cherkaev A (2000) Variational methods for structural optimization. Springer, New YorkzbMATHCrossRefGoogle Scholar
  12. Gill P, Murray W, Saunders M (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131MathSciNetzbMATHCrossRefGoogle Scholar
  13. Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254MathSciNetzbMATHCrossRefGoogle Scholar
  14. Haslinger J, Neittaanmäki P (1996) Finite element approximation for optimal shape, material and topology design. Wiley, New YorkzbMATHGoogle Scholar
  15. Hlaváček I, Bock I, Lovíšek J (1985) Optimal control of a variational inequality with applications to structural analysis. II. Local optimization of the stress in a beam. III. Optimal design of an elastic plate. Appl Math Optim 13:117–136MathSciNetzbMATHCrossRefGoogle Scholar
  16. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130:203–226MathSciNetzbMATHCrossRefGoogle Scholar
  17. Kaltenbacher M (2010) Advanced simulation tool for the design of sensors and actuators. In: Proceedings of the Eurosensors XXIV, Linz, Austria. Procedia Engineering, vol 5, pp 597–600Google Scholar
  18. Niordson FI (1983) Optimal design of plates with a constraint on the slope of the thickness function. Int J Solids Struct 19:141–151zbMATHCrossRefGoogle Scholar
  19. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41:1417–1434MathSciNetzbMATHCrossRefGoogle Scholar
  20. Sigmund O (1994a) Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of DenmarkGoogle Scholar
  21. Sigmund O (1994b) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MathSciNetzbMATHCrossRefGoogle Scholar
  22. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRefGoogle Scholar
  23. Sigmund O (2000) A new class of extremal composites. J Mech Phys Solids 48(2):397–428MathSciNetzbMATHCrossRefGoogle Scholar
  24. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4):401–424CrossRefGoogle Scholar
  25. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16:68–75Google Scholar
  26. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573MathSciNetzbMATHCrossRefGoogle Scholar
  27. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784CrossRefGoogle Scholar
  28. Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21(2):152–158CrossRefGoogle Scholar
  29. Zillober C (2002) SCPIP—an efficient software tool for the solution of structural optimization problems. Struct Multidisc Optim 24(5):362–371CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Chair of Applied Mathematics 2, Cluster of Excellence ‘Engineering of Advanced Materials’University of Erlangen-NurembergErlangenGermany

Personalised recommendations