Structural and Multidisciplinary Optimization

, Volume 44, Issue 2, pp 247–258 | Cite as

Generation of strut-and-tie models by topology design using different material properties in tension and compression

  • Mariano Victoria
  • Osvaldo M. Querin
  • Pascual Martí
Research Paper


The Strut-and-Tie Method is considered a basic tool for analysis and design of reinforced concrete structures and has been incorporated in different codes of practice such as: EC-2, BS 8110, ACI 318-08, EHE-08, etc. The stress trajectories or load path methods have been used to generate strut-and-tie models. However, the models produced by these methods are not unique, with the result depending on the intuition or expertise of the designer, specifically with regards to region D of the structure, where the load path distribution is non-linear. Topology optimization can offer new opportunities to eliminate the limitations of traditional methods. The aim of this work was to study the effect of using different mechanical properties for the steel reinforcement and for the concrete on the emerging topology of strut-and-tie models. The Isolines Topology Design (ITD) method was used for this research. Three examples are presented to show the effect of different mechanical properties used for the tensile (steel) and compressive (concrete) regions of the structure, the: (1) Single short corbel; (2) Deep beam with opening; and (3) Double-sided beam-to-column joint.


Topology design Strut-and-tie model Dual material Tension and compression Isolines topology design 



The authors would like to thank the reviewers of this paper for their invaluable advice in ways to improve the paper. This work was partially supported by the CARM (Consejería de Universidades, Empresa e Investigación de la Región de Murcia) and the Technical University of Cartagena. Its support is greatly appreciated. Travelling funds for the second named author were provided by the School of Mechanical Engineering at the University of Leeds.


  1. Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Optim 12(1):63–74CrossRefGoogle Scholar
  2. Adamu A, Karihaloo BL, Rozvany GIN (1994) Minimum cost design of reinforced concrete beams using continuum-type optimality criteria. Struct Optim 7:91–102CrossRefGoogle Scholar
  3. Alfieri L, Bassi D, Biondini F, Malerba PG (2007) Morphologic evolutionary structural optimization. In: 7th world congress on structural and multidisciplinary optimization. Seoul, Korea, paper A0422Google Scholar
  4. Ali MA (1997) Automatic generation of truss models for the optimal design of reinforced concrete structures. PhD thesis, Cornell Univ, Ithaca, NYGoogle Scholar
  5. Ali MA, White RN (2000) Formulation of optimal strut-and-tie models in design of reinforced concrete structures. ACI Special Publications 193:979–998Google Scholar
  6. Ali MA, White RN (2001) Automatic generation of truss model for optimal design of reinforced concrete structures. ACI Struct J 98:431–442Google Scholar
  7. Alsehegeir A (1992) Analysis and design of disturbed regions with strut-tie models. PhD thesis, School of Civil Engineering, Purdue UniversityGoogle Scholar
  8. Alshegeir A, Ramirez JA (1992) Computer graphics in detailing strut-tie models. ASCE J Comput Civ Eng 6(2):220–232CrossRefGoogle Scholar
  9. Anderheggen E, Schlaich M (1990) Computer aided design of reinforced concrete structures using the truss model approach. In: Bicanic N, Mang H (eds) Proceedings of the second international conference on computer aided analysis and design of concrete structures. Austria, pp 539–550Google Scholar
  10. Benabdallah S, Ramirez JA, Lee RH (1989) Computer graphics in truss-model design approach. ASCE J Comput Civ Eng 3(3):285–301CrossRefGoogle Scholar
  11. Bergmeister K, Breen JE, Jirsa JO, Kreger ME (1993) Detailing for structural concrete. Center for Transportation Research, The University of Texas, AustinGoogle Scholar
  12. Biondini F, Bontempi F, Malerba PG (1999) Optimal strut-and-tie models in reinforced concrete structures. Comput Assist Mech Eng Sci 6:279–293MATHGoogle Scholar
  13. Biondini F, Bontempi F, Malerba PG (2001) Stress path adapting strut-and-tie models in cracked and uncracked R.C. elements. Struct Eng Mech 12(6):685–698Google Scholar
  14. Bruggi M (2009) Generating strut-and-tie patterns for reinforced concrete structures using topology optimization. Comput Struct 87:1483–1495CrossRefGoogle Scholar
  15. Bruggi M (2010) On the automatic generation of strut and tie patterns under multiple load cases with application to the aseismic design of concrete structures. Adv Struct Eng 13(6):1167–1181CrossRefGoogle Scholar
  16. Cai K, Shi J (2008) A heuristic approach to solve stiffness design of continuum structures with tension/compression-only materials. Fourth Int Conf Nat Comput 1:131–135Google Scholar
  17. Chen S, Zhang Z (2006) Effective width of a concrete slab in steel–concrete composite beams prestressed with external tendons. J Constr Steel Res 62:493–500CrossRefGoogle Scholar
  18. Collings D (2005) Steel-concrete composite bridges. Thomas Telford, LondonCrossRefGoogle Scholar
  19. Collins MP, Mitchell D (1980) Shear and torsion design of prestressed and nonprestressed concrete beams. PCI J 25(5):32–100Google Scholar
  20. Collins MP, Mitchell D (1986) A rational approach for shear design. The 1984 Canadian Code Provisions. ACI Struct J 83(6):925–933Google Scholar
  21. D Langdon & Everest (2004) Spon’s civil engineering and highway works price book, 18th edn. Routledge, LondonGoogle Scholar
  22. Database BEDEC PR/PCT (2007) Institute of Construction Technology of Catalonia (in Spanish)Google Scholar
  23. Dewhurst P (2005) A general optimality criterion for combined strength and stiffness of dual-material-property structures. Int J Mech Sci 47:293–302MATHCrossRefGoogle Scholar
  24. Duysinx P (1999) Topology optimization with different stress limit in tension and compression. In: Proceedings (CD-Rom) of the third world congress of structural and multidisciplinary optimization (WCSMO3). Buffalo, NY, USAGoogle Scholar
  25. Duysinx P, Van Miegroet L, Lemaire E, Brüls O, Bruyneel M (2008) Topology and generalized shape optimization: why stress constraints are so important? Int J Simul Multidisc Des Optim 2:253–258CrossRefGoogle Scholar
  26. Fadaee MJ, Grierson DE (1996) Design optimization of 3D reinforced concrete structures. Struct Optim 12:127–134CrossRefGoogle Scholar
  27. Fernández-Ruiz M, Muttoni A (2007) On development of suitable stress fields for structural concrete. ACI Struct J 104(4):495–502Google Scholar
  28. Goedkoop M, Spriensma R (2001) The Ecoindicator 99: a damage oriented method for life cycle impact assessment. Methodology Report, Amersfoort (Netherlands): Product Ecology ConsultantsGoogle Scholar
  29. Guan H (2005) Effect of sizes and positions of web openings on strut-and-tie models of deep beams. Adv Struct Eng 8(1):69–84CrossRefGoogle Scholar
  30. Guan H, Doh JH (2007) Development of strut-and-tie models in deep beams with web openings. Adv Struct Eng 10(6):697–711CrossRefGoogle Scholar
  31. Guan H, Steven GP, Xie YM (1999) Evolutionary structural optimisation incorporating tension and compression materials. Adv Struct Eng 2(4):273–288Google Scholar
  32. Guan H, Chen YJ, Loo YCH, Xie YM, Steven GP (2003) Bridge topology optimization with stress, displacement and frequency constraints. Comput Struct 81:131–145CrossRefGoogle Scholar
  33. Hadi MNS (2003) Neural networks applications in concrete structures. Comput Struct 81:373–381CrossRefGoogle Scholar
  34. Hemp WS (1973) Optimum structures. Clarendon, OxfordGoogle Scholar
  35. Hsu TTC (1993) Unified theory of reinforced concrete. CRC, Boca RatonGoogle Scholar
  36. Johnson RP (2004) Composite structures of steel and concrete. Beams, slabs, columns, and frames for buildings, 3rd edn. Blackwell, LondonGoogle Scholar
  37. Kanagasundaram S, Karihaloo BL (1990) Minimum cost design of reinforced concrete structures. Struct Optim 2:173–184CrossRefGoogle Scholar
  38. Kim HA, Baker G (2001) Topology optimisation of reinforced concrete structures. In: Computational Mechanics - New Frontiers for the New Millennium: proceedings for the 1st Asian-Pacific congress on computational mechanics, vol 2, pp 1251–1256Google Scholar
  39. Kim HA, Baker G (2002) Topology optimization for reinforced concrete design. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J (eds) WCCM V fifth world congress on computational mechanics. Vienna, AustriaGoogle Scholar
  40. Kong FK (1990) Reinforced concrete deep beams. Taylor & Francis, New York, ISBN 0-216-92695-5Google Scholar
  41. Kumar P (1978) Optimal force transmission in reinforced concrete deep beams. Comput Struct 8(2):223–229CrossRefGoogle Scholar
  42. Kupfer H (1964) Generalization of Mörsch truss analogy using principle of minimum strain energy. CEB Bulletin d’information, Comite Ero-International du Beton 40:44–57Google Scholar
  43. Kwak HG, Noh SH (2006) Determination of strut-and-tie models using evolutionary structural optimization. Eng Struct 28:1440–1449CrossRefGoogle Scholar
  44. Lampert P, Thürlimann B (1971) Ultimate strength and design of reinforced concrete beams in torsion and bending. Springer, New York, pp 107–131Google Scholar
  45. Lee HJ (2007) Development of the stress path search model using triangulated irregular network and refined evolutionary structural optimization. J Korean Soc Agr Eng 49(6):37–46Google Scholar
  46. Leonhardt F (1965) Reducing the shear reinforcement in reinforced concrete beams and slabs. Mag Concr Res 17(53):187Google Scholar
  47. Leu LJ, Huang CW, Chen CS, Liao YP (2006) Strut-and-tie design methodology for three-dimensional reinforced concrete structures. J Struct Eng 132(6):929–938CrossRefGoogle Scholar
  48. Liang QQ (2005) Performance-based optimization of structures: theory and applications. Routledge, London, pp 134–207CrossRefGoogle Scholar
  49. Liang QQ (2006) Performance-based optimization of strut-and-tie models in reinforced concrete beam-column connections. In: 10th East Asia-Pacific conference on structural engineering and construction: materials, experimentation, maintenance and rehabilitation (EASEC-10). Bangkok, ThailandGoogle Scholar
  50. Liang QQ, Xie YM, Steven GP (2000a) Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure. ACI Struct J 97(2):322–330Google Scholar
  51. Liang QQ, Xie YM, Steven GP (2000b) Optimal topology design of bracing systems for multistory steel frames. J Struct Eng 126(7):823–829CrossRefGoogle Scholar
  52. Liang QQ, Xie YM, Steven GP (2001) Generating optimal strut-and-tie models in prestressed concrete beams by performance based optimization. ACI Struct J 98(2):226–232Google Scholar
  53. Liang QQ, Uy B, Steven GP (2002) Performance-based optimization for strut-and-tie modeling of structural concrete. J Struct Eng 128(6):815–823CrossRefGoogle Scholar
  54. MacGregor JG (1997) Reinforced concrete mechanics and design, 3rd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  55. Marti P (1980) On plastic analysis of reinforced concrete. Institute of Structural Engineers, report no. 104Google Scholar
  56. Marti P (1985) Basic tools of reinforced concrete beam design. ACI J 82(1):46–56MathSciNetGoogle Scholar
  57. Martinez P (2003) Diseño óptimo simultáneo de topología y geometría de estructuras articuladas mediante técnicas de crecimiento. PhD thesis, Technical University of Cartagena (in Spanish)Google Scholar
  58. Martinez P, Marti P, Querin OM (2007) Growth method for size, topology, and geometry optimization of truss structures. Struct Multidisc Optim 33:13–26CrossRefGoogle Scholar
  59. Moen CD, Guest JK (2010) Reinforced concrete analysis and design with truss topology optimization. In: 3rd fib international congressGoogle Scholar
  60. Mörsch E (1902) Der Eisenbetonbau, seine Theorie und Anwendung (Reinforced Concrete, Theory and Application). StuttgartGoogle Scholar
  61. Mörsch E (1909) Concrete-steel construction. Goodrich EP, translator, McGraw-Hill, New YorkGoogle Scholar
  62. Müeller P (1978) Plastische Berechnung von Stahlbetonscheiben und balken 83, Institut für baustatik und konstruktion, ZurichGoogle Scholar
  63. Nagarajan P, Madhavan Pillai TM (2008) Development of strut and tie models for simply supported deep beams using topology optimization. Songklanakharin J Sci Technol 30(5):641–647Google Scholar
  64. Nair AU (2005) Evolutionary numerical methods applied to mínimum weight structural design and cardiac mechanics. PhD thesis, Mechanical Engineering and Applied Mechanics, University of Rhode IslandGoogle Scholar
  65. Nowak M (2006) Structural optimization system based on trabecular bone surface adaptation. Struct Multidisc Optim 32:241–249CrossRefGoogle Scholar
  66. Pálfi P (2004) Locally orthotropic femur model. J Comput Appl Mech 5(1):103–115MATHGoogle Scholar
  67. Park JW, Yindeesuk S, Tjhin T, Kuchma D (2010) Automated finite-element-based validation of structures designed by the strut-and-tie method. J Struct Eng 136(2):203–210CrossRefGoogle Scholar
  68. Paya-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-optimization of reinforced concrete frames by simulated annealing. Eng Struct 31:1501–1508CrossRefGoogle Scholar
  69. Perea C, Alcala J, Yepes V, Gonzalez-Vidosa F, Hospitaler A (2008) Design of reinforced concrete bridge frames by heuristic optimization. Adv Eng Softw 39:676–688CrossRefGoogle Scholar
  70. Prager W (1958) A problem of optimal design. In: Proceedings of the union of theoretical and applied mechanics. WarsawGoogle Scholar
  71. Querin OM, Victoria M, Martí P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidisc Optim 42:25–32CrossRefGoogle Scholar
  72. Ritter W (1899) Die Bauweise Hennebique (The Hennebique System). Schweizerische Bauzeitung, Bd. XXXIII, 7, ZürichGoogle Scholar
  73. Rogowsky D, MacGregor J, Ong S (1986) Tests of reinforced concrete deep beams. ACI J Proc 83(4):614–623Google Scholar
  74. Rozvany GIN (1996) Some shortcomings in Michell’s truss theory. Struct Optim 12:244–260CrossRefGoogle Scholar
  75. Sahab MG, Ashour AF, Toropov VV (2005) Cost optimisation of reinforced concrete flat slab buildings. Eng Struct 27:313–322CrossRefGoogle Scholar
  76. Saint-Venant AJCB (1855) Memoire sur la torsion des prismes, mem. Divers Savants 14:233–560Google Scholar
  77. Schlaich J, Weischede D (1982) Ein praktisches verfahren zum methodischen bemessen und konstruieren im stahlbetonbau”. Bulletin d’Information No150, Comité Euro-International du Béton, ParisGoogle Scholar
  78. Schlaich J, Schäfer K (1991) Design and detailing of structural concrete using strut-and-tie models. Struct Eng 69(6):113–125Google Scholar
  79. Schlaich J, Schäfer K, Jennewein M (1987) Toward a consistent design of structural concrete. PCI J PCI 32(3):75–150Google Scholar
  80. Selyugin SV (2004) Some general results for optimal structures. Struct Multidisc Optim 26:357–366CrossRefGoogle Scholar
  81. Srithongchai S, Dewhurst P (2003) Comparisons of optimality criteria for minimum-weight dual material structures. Int J Mech Sci 45:1781–1797MATHCrossRefGoogle Scholar
  82. Taggart DG, Dewhurst P, Nair AU (2007) System and method for finite element based topology optimization. WO/2007/076357 (patent application)Google Scholar
  83. Thürlimann B, Marti P, Pralong J, Ritz P, Zimmerli B (1983) Vorlesung zum Fortbildungskurs für bauingenieure. Institut für baustatik und konstruktion, ETH, ZurichGoogle Scholar
  84. Timoshenko S (1953) History of strength of materials. McGraw-Hill, New YorkGoogle Scholar
  85. Tjhin TN, Kuchma DA (2002) Computer-based tools for design by the strut-and-tie method: advances and challenges. ACI Struct J 99(5):586–594Google Scholar
  86. Tjhin TN, Kuchma DA (2007) Integrated analysis and design tool for the strut-and-tie method. Eng Struct 29:3042–3052CrossRefGoogle Scholar
  87. Victoria M, Marti P, Querin OM (2009) Topology design of two-dimensional continuum structures using isolines. Comput Struct 87:101–109CrossRefGoogle Scholar
  88. Victoria M, Querin OM, Marti P (2010) Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces. Finite Elem Anal Des 46:229–237CrossRefGoogle Scholar
  89. Wiedmann T, Minx J (2008) A definition of ‘Carbon Footprint’. In: Pertsova CC (ed) Ecological economics research trends, chapter 1. Nova Science Publishers, Hauppauge NY, USA, pp 1–11. Accessed 11 August 2010
  90. Yun YM (2000) Computer graphics for nonlinear strut-tie model approach. ASCE J Comput Civ Eng 14(2):127–33CrossRefGoogle Scholar
  91. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier, AmsterdamMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mariano Victoria
    • 1
  • Osvaldo M. Querin
    • 2
  • Pascual Martí
    • 1
  1. 1.Department of Structures and ConstructionTechnical University of CartagenaCartagenaSpain
  2. 2.School of Mechanical EngineeringUniversity of LeedsLeedsUK

Personalised recommendations