Structural and Multidisciplinary Optimization

, Volume 43, Issue 6, pp 767–784

On projection methods, convergence and robust formulations in topology optimization

  • Fengwen Wang
  • Boyan Stefanov Lazarov
  • Ole Sigmund
Research Paper
  • 2.7k Downloads

Abstract

Mesh convergence and manufacturability of topology optimized designs have previously mainly been assured using density or sensitivity based filtering techniques. The drawback of these techniques has been gray transition regions between solid and void parts, but this problem has recently been alleviated using various projection methods. In this paper we show that simple projection methods do not ensure local mesh-convergence and propose a modified robust topology optimization formulation based on erosion, intermediate and dilation projections that ensures both global and local mesh-convergence.

Keywords

Topology optimization Robust design Compliant mechanisms Manufacturing constraints 

References

  1. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetMATHCrossRefGoogle Scholar
  2. Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1:55–69MathSciNetMATHCrossRefGoogle Scholar
  3. Amir O, Bendsoe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78(12):1474–1491MathSciNetMATHCrossRefGoogle Scholar
  4. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  5. Bendsøe MP, Sigmund O (2004) Topology optimization—theory, methods and applications. Springer, BerlinMATHGoogle Scholar
  6. Borel PI, Frandsen LH, Harpøth A, Kristensen M, Jensen JS, Sigmund O (2005) Topology optimised broadband photonic crystal Y-splitter. Electron Lett 41(2):69–71CrossRefGoogle Scholar
  7. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158MathSciNetMATHCrossRefGoogle Scholar
  8. Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459MATHCrossRefGoogle Scholar
  9. Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10:40–45Google Scholar
  10. Guest J (2009) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199(1–4):123–135. doi:10.1016/j.cma.2009.09.023 MathSciNetCrossRefGoogle Scholar
  11. Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetMATHCrossRefGoogle Scholar
  12. Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on the perimeter. Struct Optim 11(1):1–11CrossRefGoogle Scholar
  13. Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22(6):1191–1198CrossRefGoogle Scholar
  14. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226MathSciNetMATHCrossRefGoogle Scholar
  15. Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2010) Heaviside projection based topology optimization by a pde-filtered scalar function. Struct Multidisc Optim. doi:10.1007/s00158-010-0562-2 MATHGoogle Scholar
  16. Kirsch U (2008) Reanalysis of structures. Springer, BerlinMATHGoogle Scholar
  17. Lazarov B, Sigmund O (2009) Sensitivity filters in topology optimisation as a solution to Helmholtz type differential equation. In: Proc. of the 8th world congress on structural and multidisciplinary optimization. Lisbon, PortugalGoogle Scholar
  18. Lazarov B, Sigmund O (2010) Filters in topology optimizat ion based on Helmholtz type differential equations. Int J Numer Methods Eng. doi:10.1002/nme.3072
  19. Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331MATHGoogle Scholar
  20. Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760MathSciNetMATHCrossRefGoogle Scholar
  21. Sardan Ö, Petersen DH, Mølhave K, Sigmund O, Bøggild P (2008) Topology optimized electrothermal polysilicon microgrippers. Microelectron Eng 85:1096–1099. doi:10.1016/j.mee.2008.01.049 CrossRefGoogle Scholar
  22. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRefGoogle Scholar
  23. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424CrossRefGoogle Scholar
  24. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25(2):227–239. doi:10.1007/s10409-009-0240-z CrossRefGoogle Scholar
  25. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRefGoogle Scholar
  26. Stainko R, Sigmund O (2007) Tailoring dispersion properties of photonic crystal waveguides by topology optimization. Waves Random Complex Media 17:477–489MathSciNetMATHCrossRefGoogle Scholar
  27. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetMATHCrossRefGoogle Scholar
  28. Wang F, Jensen J, Sigmund O (2010) Robust topology optimization of photonic crystal waveguides with tailored dispersion properties (submitted)Google Scholar
  29. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MATHCrossRefGoogle Scholar
  30. Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside funtions. Struct Multidisc Optim 41:495–505MathSciNetCrossRefGoogle Scholar
  31. Yoon GH, Sigmund O (2008) A monolithic approach for topology optimization of electrostatically actuated devices. Comput Methods Appl Mech Eng 197:4062–4075. doi:10.1016/j.cma.2008.04.004 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fengwen Wang
    • 1
  • Boyan Stefanov Lazarov
    • 1
  • Ole Sigmund
    • 1
  1. 1.Department of Mechanical Engineering, Solid MechanicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations