Structural and Multidisciplinary Optimization

, Volume 42, Issue 3, pp 387–402 | Cite as

Topology optimization for designing strain-gauge load cells

  • Akihiro Takezawa
  • Shinji Nishiwaki
  • Mitsuru Kitamura
  • Emílio C. N. Silva
Research Paper

Abstract

Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.

Keywords

Load cell Topology optimization Singular value decomposition Compliant mechanism Strain gauge 

References

  1. Allaire G (2001) Shape Optimization by the Homogenization method. Springer, New YorkGoogle Scholar
  2. Bayo E, Stubbe JR (1989) Six-axis force sensor evaluation and a new type of optimal frame truss design for robotic applications. J Robot Syst 6(2):191–208CrossRefMATHGoogle Scholar
  3. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  4. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  5. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654CrossRefGoogle Scholar
  6. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinGoogle Scholar
  7. Canfield S, Frecker M (2000) Topology optimization of compliant mechanical amplifiers for piezoelectric actuators. Struct Multidisc Optim 20(4):269–279CrossRefGoogle Scholar
  8. Chao LP, Chen KT (1997) Shape optimal design and force sensitivity evaluation of six-axis force sensors. Sens Actuator Phys 63(2):105–112CrossRefMathSciNetGoogle Scholar
  9. Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRefGoogle Scholar
  10. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATHGoogle Scholar
  11. Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMATHGoogle Scholar
  12. Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic, OrlandoMATHGoogle Scholar
  13. Kaneko M (1996) Twin-head six-axis force sensors. IEEE Trans Robot Autom 12(1):146–154CrossRefGoogle Scholar
  14. Kim GS, Lee HD (2003) Development of a six-axis force/moment sensor and its control system for an intelligent robot’s gripper. Meas Sci Technol 14:1265–1274CrossRefGoogle Scholar
  15. Kim JA, Bae EW, Kim SH, Kwak YK (2002) Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets. Precis Eng 26:99–104CrossRefGoogle Scholar
  16. Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4–5):535–563CrossRefMATHGoogle Scholar
  17. Liu SA, Tzo HL (2002) A novel six-component force sensor of good measurement isotropy and sensitivities. Sens Actuator Phys 100(2–3):223–230CrossRefGoogle Scholar
  18. Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280CrossRefMathSciNetMATHGoogle Scholar
  19. Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59:1925–1944CrossRefMathSciNetMATHGoogle Scholar
  20. Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Eng 42:535–559CrossRefMathSciNetMATHGoogle Scholar
  21. Park JJ, Kim GS (2005) Development of the 6-axis force/moment sensor for an intelligent robot’s gripper. Sens Actuator Phys 118(1):127–134CrossRefGoogle Scholar
  22. Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20(1):2–11CrossRefGoogle Scholar
  23. Pedersen CBW (2004) Crashworthiness design of transient frame structures using topology optimization. Comput Methods Appl Mech Eng 193(6–8):653–678CrossRefMATHGoogle Scholar
  24. Rubio WM, Silva ECN, Nishiwaki S (2008) Piezoresistive sensor design using topology optimization. Struct Multidisc Optim 36(6):571–583CrossRefGoogle Scholar
  25. Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227CrossRefGoogle Scholar
  26. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524CrossRefGoogle Scholar
  27. Sigmund O (2001) Design of multiphysics actuators using topology optimization–part i: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604CrossRefMATHGoogle Scholar
  28. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4):401–424CrossRefGoogle Scholar
  29. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRefGoogle Scholar
  30. Silva ECN, Nishiwaki S, Kikuchi N (2000) Topology optimization design of flextensional actuators. IEEE Trans Ultrason Ferroelectr Freq Control 47(3):657–671CrossRefGoogle Scholar
  31. Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318CrossRefMATHGoogle Scholar
  32. Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373CrossRefMathSciNetMATHGoogle Scholar
  33. Uchiyama M, Bayo E, Palma-Villalon E (1991a) A systematic design procedure to minimize a performance index for robot force sensors. J Dyn Syst Meas Control 113:388–394CrossRefGoogle Scholar
  34. Uchiyama M, Nakamura Y, Hakomori K (1991b) Evaluation of the robot force sensor structure using singular value decomposition. Adv. Robot 5(1):39–52CrossRefGoogle Scholar
  35. Weiblen W, Hofmann T (1998) Evaluation of different designs of wheel force transducers. SAE Paper (980262):1–10Google Scholar
  36. Zhou M, Rozvany GIN (1991) The coc algorithm. II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Akihiro Takezawa
    • 1
  • Shinji Nishiwaki
    • 2
  • Mitsuru Kitamura
    • 1
  • Emílio C. N. Silva
    • 3
  1. 1.Department of Social and Environmental Engineering, Graduate School of EngineeringHiroshima UniversityHigashihiroshimaJapan
  2. 2.Department of Mechanical Engineering and Science, Graduate School of EngineeringKyoto UniversityKyotoJapan
  3. 3.Department of Mechatronics and Mechanical Systems EngineeringEscola Politécnica da Universidade de São PauloSão PauloBrazil

Personalised recommendations