Advertisement

Structural and Multidisciplinary Optimization

, Volume 41, Issue 4, pp 525–539 | Cite as

A computational paradigm for multiresolution topology optimization (MTOP)

  • Tam H. Nguyen
  • Glaucio H. Paulino
  • Junho Song
  • Chau H. Le
Research Paper

Abstract

This paper presents a multiresolution topology optimization (MTOP) scheme to obtain high resolution designs with relatively low computational cost. We employ three distinct discretization levels for the topology optimization procedure: the displacement mesh (or finite element mesh) to perform the analysis, the design variable mesh to perform the optimization, and the density mesh (or density element mesh) to represent material distribution and compute the stiffness matrices. We employ a coarser discretization for finite elements and finer discretization for both density elements and design variables. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. We demonstrate via various two- and three-dimensional numerical examples that the resolution of the design can be significantly improved without refining the finite element mesh.

Keywords

Topology optimization Density mesh Design variable Multiresolution Finite element mesh Projection scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida SRM, Paulino GH, Silva ECN (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidisc Optim 39(4):359–371CrossRefMathSciNetGoogle Scholar
  2. Amir O, Bendsøe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78(12):1474–1491CrossRefGoogle Scholar
  3. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202Google Scholar
  4. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  5. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654Google Scholar
  6. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, New YorkGoogle Scholar
  7. Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229CrossRefMathSciNetzbMATHGoogle Scholar
  8. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(8):2143–2158CrossRefMathSciNetzbMATHGoogle Scholar
  9. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefzbMATHGoogle Scholar
  10. Carbonari RC, Silva ECN, Paulino GH (2009) Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int J Numer Methods Eng 77(3):301–336CrossRefzbMATHGoogle Scholar
  11. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, New York, pp 96–100Google Scholar
  12. de Ruiter MJ, van Keulen F (2004) Topology optimization using a topology description function. Struct Multidisc Optim 26(6):406–416CrossRefGoogle Scholar
  13. de Sturler E, Paulino GH, Wang S (2008) Topology optimization with adaptive mesh refinement. In: Proceeding of the 6th international conference on computational of shell and spatial structures, IASS-IACM, 28–31 May 2008. Cornell University, Ithaca, NY, USAGoogle Scholar
  14. Diaz AR, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10(1):40–45Google Scholar
  15. Guest JK, Genut LCS (2009) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng. doi: 10.1002/nme.2724 Google Scholar
  16. Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254CrossRefMathSciNetzbMATHGoogle Scholar
  17. Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization—a new paradigm. Int J Solids Struct 37(39):5529–5559CrossRefMathSciNetzbMATHGoogle Scholar
  18. Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925–1944CrossRefMathSciNetzbMATHGoogle Scholar
  19. Paulino GH, Le CH (2009) A modified Q4/Q4 element for topology optimization. Struct Multidisc Optim 37(3):255–264CrossRefMathSciNetGoogle Scholar
  20. Paulino GH, Almeida SRM, Silva ECN (2008) Pattern repetition in topology optimization of functionally graded material. In: Proceedings of the multiscale, multifunctional and functionally graded materials conference, 22–25 September 2008. Sendai, JapanGoogle Scholar
  21. Paulino GH, Pereira A, Talischi C, Menezes IFM, Celes W (2008) Embedding of superelements for three-dimensional topology optimization. In: Proceedings of Iberian Latin American congress on computational methods in engineering (CILAMCE)Google Scholar
  22. Paulino GH, Silva ECN, Le CH (2009) Optimal design of periodic functionally graded composites with prescribed properties. Struct Multidisc Optim 38(5):469–489CrossRefMathSciNetGoogle Scholar
  23. Pomezanski V, Querin OM, Rozvany GIN (2005) CO-SIMP: extended SIMP algorithm with direct corner contact control. Struct Multidisc Optim 30(2):164–168CrossRefGoogle Scholar
  24. Poulsen TA (2002a) Topology optimization in wavelet space. Int J Numer Methods Eng 53(3):567–582CrossRefMathSciNetzbMATHGoogle Scholar
  25. Poulsen TA (2002b) A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization. Struct Multidisc Optim 24(5):396–399CrossRefGoogle Scholar
  26. Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidisc Optim 27(1–2):130–135CrossRefGoogle Scholar
  27. Rozvany GIN (1996) Some shortcomings in Michell’s truss theory. Struct Multidisc Optim 12(4):244–250MathSciNetGoogle Scholar
  28. Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21(2):90–108CrossRefGoogle Scholar
  29. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3–4):250–252Google Scholar
  30. Sigmund O (2000) Topology optimization: a tool for the tailoring of structures and materials. Philos Trans Math Phys Eng Sci 358(1765):211–227CrossRefMathSciNetzbMATHGoogle Scholar
  31. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127CrossRefGoogle Scholar
  32. Sigmund O, Peterson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75Google Scholar
  33. Stainko R (2006) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Methods Eng 22(2):109–118CrossRefMathSciNetzbMATHGoogle Scholar
  34. Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318CrossRefzbMATHGoogle Scholar
  35. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373CrossRefMathSciNetzbMATHGoogle Scholar
  36. Talischi C, Paulino GH, Le CH (2009) Honeycomb Wachspress finite elements for structural topology optimization. Struct Multidisc Optim 37(6):569–583CrossRefMathSciNetGoogle Scholar
  37. Wang S, Sturler E, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tam H. Nguyen
    • 1
  • Glaucio H. Paulino
    • 1
  • Junho Song
    • 1
  • Chau H. Le
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations