Structural and Multidisciplinary Optimization

, Volume 41, Issue 4, pp 605–620 | Cite as

Stress-based topology optimization for continua

  • Chau LeEmail author
  • Julian Norato
  • Tyler Bruns
  • Christopher Ha
  • Daniel Tortorelli
Research Paper


We propose an effective algorithm to resolve the stress-constrained topology optimization problem. Our procedure combines a density filter for length scale control, the solid isotropic material with penalization (SIMP) to generate black-and-white designs, a SIMP-motivated stress definition to resolve the stress singularity phenomenon, and a global/regional stress measure combined with an adaptive normalization scheme to control the local stress level.


Topology optimization Stress constraints Regional stress measure Normalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidisc Optim 28(2–3):87–98MathSciNetGoogle Scholar
  2. Altair Engineering (2007) Optistruct user’s guide, version 8.0. Troy, MI, USAGoogle Scholar
  3. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202Google Scholar
  4. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):625–654Google Scholar
  5. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinGoogle Scholar
  6. Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928zbMATHCrossRefMathSciNetGoogle Scholar
  7. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(8):2143–2158zbMATHCrossRefMathSciNetGoogle Scholar
  8. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidisc Optim 36(2):125–141CrossRefMathSciNetGoogle Scholar
  9. Bruggi M, Venini P (2008) A mixed FEM approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(11):1693–1714zbMATHCrossRefMathSciNetGoogle Scholar
  10. Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Struct Multidisc Optim 30(5):428–436CrossRefMathSciNetGoogle Scholar
  11. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459zbMATHCrossRefGoogle Scholar
  12. Cheng GD, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148CrossRefGoogle Scholar
  13. Cheng GD, Guo X (1997) Epsilon-relaxed approach in structural topology optimization. Struct Multidisc Optim 13(4):258–266Google Scholar
  14. Diaz A, Sigmund O (2007) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10(1):40–45Google Scholar
  15. Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(2):1453–1478zbMATHCrossRefGoogle Scholar
  16. Duysinx P, Sigmund O (1998) New development in handling stress constraints in optimal material distribution. In: Proc. 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. A collection of technical papers (held in St. Louis, Missouri), vol 3, pp 1501–1509Google Scholar
  17. Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23(3):409–428zbMATHCrossRefMathSciNetGoogle Scholar
  18. Fonseca JSO, Cardoso EL (2003) Complexity control in the topology optimization of continuum structures. J Braz Soc Mech Sci Eng 25(3):293–301Google Scholar
  19. Friedlander A, Martínez JM, Santos SA (1994) A new trust-region algorithm for bound constrained minimization. Appl Math Optim 30(3):235–266zbMATHCrossRefMathSciNetGoogle Scholar
  20. Guilherme CEM, Fonseca JSO (2007) Topology optimization of continuum structures with epsilon-relaxed stress constraints. In: Alves M, da Costa Mattos HS (eds) Solid mechanics in Brazil, vol 1. ABCM, Rio de Janeiro, pp 239–250Google Scholar
  21. Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Multidisc Optim 11(1–2):1–12Google Scholar
  22. Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidisc Optim 2(3):133–142Google Scholar
  23. Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2009) Stress-based topology optimization for continua. In: Proc. 8th world congresses of structural and multidisciplinary optimization. Lisbon, PortugalGoogle Scholar
  24. Lipton R (2002) Design of functionally graded composite structures in the presence of stress constraints. Int J Solids Struct 39(8):2575–2586zbMATHCrossRefMathSciNetGoogle Scholar
  25. Michaleris P, Tortorelli DA, Vidal CA (1994) Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(13):2471–2499zbMATHCrossRefGoogle Scholar
  26. París J, Navarrina F, Colominas I, Casteleiro M (2007) Block aggregation of stress constraints in topology optimization of structures. In: Hernández S, Brebbia CA (eds) Computer aided optimum design of structures X. Myrtle Beach (SC), USAGoogle Scholar
  27. París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidisc Optim 39(4):419–437CrossRefGoogle Scholar
  28. Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidisc Optim 26(1–2):50–66CrossRefMathSciNetGoogle Scholar
  29. Rahmatalla S, Swan CC (2004) Continuum topology optimization of buckling-sensitive structures. Struct Multidisc Optim 27(1–2):130–135CrossRefGoogle Scholar
  30. Rozvany GIN (2001) On design-dependent constraints and singular topologies. Struct Multidisc Optim 21(2):164–172CrossRefGoogle Scholar
  31. Rozvany GIN, Birker T (1994) On singular topologies in exact layout optimization. Struct Multidisc Optim 8(4):228–235Google Scholar
  32. Rozvany GIN, Sobieszczanski-Sobieski J (1992) New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections. Struct Multidisc Optim 4(3–4):244–246Google Scholar
  33. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3–4):250–252Google Scholar
  34. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mechan Struct Mach 25(4):493–524CrossRefGoogle Scholar
  35. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424CrossRefGoogle Scholar
  36. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75Google Scholar
  37. Stump FV, Silva ECN, Paulino GH (2007) Optimization of material distribution in functionally graded structures with stress constraints. Commun Numer Methods Eng 23(5):535–551zbMATHCrossRefMathSciNetGoogle Scholar
  38. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373zbMATHCrossRefMathSciNetGoogle Scholar
  39. Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidisc Optim 34(4):277–299CrossRefMathSciNetGoogle Scholar
  40. Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Multidisc Optim 12(2):98–105Google Scholar
  41. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):209–336Google Scholar
  42. Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21:152–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Chau Le
    • 1
    Email author
  • Julian Norato
    • 2
  • Tyler Bruns
    • 2
  • Christopher Ha
    • 2
  • Daniel Tortorelli
    • 1
  1. 1.University of Illinois at Urbana–ChampaignChampaign–UrbanaUSA
  2. 2.Champaign Simulation CenterCaterpillar Inc.ChampaignUSA

Personalised recommendations