Structural and Multidisciplinary Optimization

, Volume 41, Issue 4, pp 637–646 | Cite as

Aeroelastic tailoring using lamination parameters

Drag reduction of a Formula One rear wing
  • Glenn A. A. Thuwis
  • Roeland De Breuker
  • Mostafa M. Abdalla
  • Zafer Gürdal
Open Access
Industrial Application

Abstract

The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher velocity, the amount of downforce and related induced drag increases. The maximum speed on a straight part is thus reduced due to the increase in induced drag. A fibre reinforced composite torsion box with extension-shear coupled upper and lower skins is used leading to bending-torsion coupling. Three-dimensional static aeroelastic analysis is performed loosely coupling the Finite Element code Nastran and the Computational Fluid Dynamics panel code VSAERO using ModelCenter. A wing representative of Formula One rear wings is optimised for minimum induced drag using a response surface methodology. Results indicate that a substantial induced drag reduction is achievable while maintaining the desired downforce during low speed turns.

Keywords

Aeroelastic tailoring Lamination parameters Drag reduction Automotive 

References

  1. Abdalla M, De Breuker R, Gürdal Z (2007) Aeroelastic tailoring of variable-stiffness slender wings for minimum compliance. In: IFASD, StockholmGoogle Scholar
  2. Abrate S (1994) Optimal design of laminated plates and shells. Compos Struct 29:269–286CrossRefGoogle Scholar
  3. Beckert A (2000) Coupling fluid (CFD) and structural (FE) models using finite interpolation elements. Aerosp Sci Technol 4:13–22MATHCrossRefGoogle Scholar
  4. Beckert A, Wendland H (2001) Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp Sci Technol 5:125–134MATHCrossRefGoogle Scholar
  5. Benzing E (1992) Ali/Wings: studio per tecnici e piloti di auto da corsa/study for racing car engineers and drivers. MilanoGoogle Scholar
  6. Bisplinghoff R, Ashley H, Halfman R (1955) Aeroelasticity. Addison-Wesley, ReadingMATHGoogle Scholar
  7. de Boer A, van Zuijlen A, Bijl H (2007) Review of coupling methods for non-matching meshes. Comput Methods Appl Mech Eng 196:1515–1525MATHCrossRefGoogle Scholar
  8. Bramesfeld G, Ironside D, Schwochow J (2008) Simplified modeling of wing-drag reduction due to structural dynamics and atmospheric gusts. In: 26th AIAA applied aerodynamics conference, HonoluluGoogle Scholar
  9. Cramer E, Gablonsky J (2004) Effective parallel optimization of complex computer simulations. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, AlbanyGoogle Scholar
  10. Diaconu C, Sato M, Sekine H (2002) Feasible region in general design space of lamination parameters for laminated composites. AIAA J 40(3):559–565CrossRefGoogle Scholar
  11. Dowell E (2004) A modern course in aeroelasticity. Kluwer, DordrechtMATHGoogle Scholar
  12. Farhat C, Lesionne M (1998) Higher-order staggered and subiteration free algorithms for coupled dynamic aeroelasticity problems. In: 36th aerospace sciences meeting & exhibit, RenoGoogle Scholar
  13. FIA (2007) 2008 Formula 1 technical regulations. Federation Internationale de l’AutomobileGoogle Scholar
  14. Fukunaga H, Sekine H (1992) Stiffness design method of symmetric laminates using lamination parameters. AIAA J 30(11):2791–2793CrossRefGoogle Scholar
  15. Fukunaga H, Sekine H (1994) A laminate design for elastic properties of symmetric laminates with extension-shear of bending-twist coupling. J Compos Mater 28(8):708–731Google Scholar
  16. Fukunaga H, Vanderplaats G (1991) Stiffness optimization of orthotropic laminated composites using lamination parameters. AIAA J 29(4):641–646CrossRefGoogle Scholar
  17. Guo S, Cheng W, Cui D (2005) Optimization of composite wing structures for maximum flutter speed. In: 46th AIAA/ASME/ ASCE/AHS/ASC structures, structural dynamics & materials conference, AustinGoogle Scholar
  18. Guo S, Cheng W, Cui D (2006) Aeroelastic tailoring of composite wing structures by laminate layup optimization. AIAA J 44(12):3146–3149CrossRefGoogle Scholar
  19. Gürdal Z, Olmedo R (1993) In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept. AIAA J 31(4):751–758MATHCrossRefGoogle Scholar
  20. Gürdal Z, Haftka R, Hajela P (1999) Design and optimization of laminated composite materials. Wiley, New YorkGoogle Scholar
  21. INTEC GmbH (2004) Simpack user’s guideGoogle Scholar
  22. Kameyama M, Fukunaga H (2007) Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters. Comput Struct 85:213–224CrossRefGoogle Scholar
  23. van Kan J, Segal G, Vermolen F (2005) Numerical methods in scientific computing. VSSDGoogle Scholar
  24. Katz J (1989) Aerodynamics of high-lift, low-aspect-ratio unswept wings. AIAA J 27(8):1123–1124CrossRefGoogle Scholar
  25. Katz J (2006) Aerodynamics of race cars. Annu Rev Fluid Mech 38:27–63CrossRefGoogle Scholar
  26. Liebeck R (1978) Design of subsonic airfoils for high lift. J Aircraft 15(9):547–561CrossRefGoogle Scholar
  27. Liu B, Haftka R (2004) Single-level composite wing optimization based on flexural lamination parameters. Struct Multidiscipl Optim 26:111–120CrossRefGoogle Scholar
  28. Lynch R, Rogers W (1976) Aeroelastic tailoring of composite materials to improve performance. In: 17th AIAA/ASME/ASCE/ AHS/ASC structures, structural dynamics & materials conference, King of Prussia, pp 61–68Google Scholar
  29. MacNeal RH (1972) The Nastran theoretical manual. NASA (SP-221(01))Google Scholar
  30. Maskew B (1982) VSAERO A computer program for calculating the nonlinear aerodynamic characteristics of arbitrary configurations. NASA (CR-166476)Google Scholar
  31. Massegur D, Quaranta G, Cavagna L (2007) Race cars flex their muscle. ANSYS Advantage 1(1):9–11Google Scholar
  32. Miki M, Sugiyama Y (1993) Optimum design of laminated composite plates using lamination parameters. AIAA J 31(5):921–922CrossRefGoogle Scholar
  33. Patil M (1997) Aeroelastic tailoring of composite box beams. In: 35th AIAA aerospace sciences meeting & exhibit, RenoGoogle Scholar
  34. Persson P, Strang G (2004) A simple mesh generator in matlab. SIAM Rev 46(2):329–345MATHCrossRefMathSciNetGoogle Scholar
  35. Phoenix Integration (2003) Improving the engineering process with software integrationGoogle Scholar
  36. Rehfield L, Cheung R (2003) Some basic strategies for aeroelastic tailoring of wings with bend-twist coupling: part one. In: 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, NorfolkGoogle Scholar
  37. Rehfield L, Cheung R (2004) Strategies for aeroelastic tailoring of wings with bend-twist coupling: part two. In: 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, Palm SpringsGoogle Scholar
  38. Rendall T, Allen C (2007) Unified fluid-structure interpolation and mesh motion using radial basis functions. Int J Numer Methods EngGoogle Scholar
  39. Setoodeh S, Abdalla M, Gürdal Z, Tatting B (2005) Design of variable-stiffness composite laminates for maximum in-plane stiffness using lamination parameters. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, AustinGoogle Scholar
  40. Setoodeh S, Abdalla M, Gürdal Z (2006) Design of variable-stiffness laminates using lamination parameters. Composites: Part B 37:301–309CrossRefGoogle Scholar
  41. Shirk M, Hertz T, Weisshaar T (1986) Aeroelastic tailoring—theory, practise, and promise. J Aircraft 23(1):6–18CrossRefGoogle Scholar
  42. Stanford B, Ifju P (2008) Aeroelastic tailoring of fixed membrane wings for micro air vehicles. In: 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Schaumberg, ILGoogle Scholar
  43. Thuwis G, De Breuker R, Abdalla M (2008) Aeroelastic tailoring of a Formula One car rear wing. In: Proceedings of the sixth international conference on engineering computational technology, AthensGoogle Scholar
  44. Török J (2000) Analytical mechanics. Wiley, New YorkGoogle Scholar
  45. Tsai S, Pagano N (1968) Invariant properties of composite materials. In: Composite materials workshop, pp 233–253Google Scholar
  46. Weisshaar T (1981) Aeroelastic tailoring of forward swept composite wings. J Aircraft 18(8):669–676CrossRefGoogle Scholar
  47. Weisshaar T, Duke D (2006) Induced drag reduction using aeroelastic tailoring with adaptive control surfaces. J Aircraft 43(1):157–164CrossRefGoogle Scholar
  48. Weisshaar T, Ryan R (1986) Control of aeroelastic instabilities through stiffness cross-coupling. J Aircraft 23(2):148–155CrossRefGoogle Scholar
  49. Weisshaar T, Nam C, Batista-Rodriguez A (1998) Aeroelastic tailoring for improved UAV performance. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, Long BeachGoogle Scholar
  50. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396MATHCrossRefMathSciNetGoogle Scholar
  51. Wright P (1974) Aerodynamics for Formula 1. Aeronaut J 78:226–230Google Scholar
  52. Zhang X, Toet W, Zerihan J (2006) Ground effect aerodynamics of race cars. Appl Mech Rev 59:33–49CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Glenn A. A. Thuwis
    • 1
  • Roeland De Breuker
    • 1
  • Mostafa M. Abdalla
    • 1
  • Zafer Gürdal
    • 1
  1. 1.Faculty of Aerospace EngineeringTU DelftHS DelftThe Netherlands

Personalised recommendations