Structural and Multidisciplinary Optimization

, Volume 41, Issue 1, pp 117–131 | Cite as

A parametric level-set approach for topology optimization of flow domains

  • Georg PingenEmail author
  • Matthias Waidmann
  • Anton Evgrafov
  • Kurt Maute
Research Paper


Traditional methods based on an element-wise parameterization of the material distribution applied to the topology optimization of fluidic systems often suffer from slow convergence of the optimization process, as well as robustness issues at increased Reynolds numbers. The local influence of the design variables in the traditional approaches is seen as a possible cause for the slow convergence. Non-smooth material distributions are suspected to trigger premature onset of instationary flows which cannot be treated by steady-state flow models. In the present work, we study whether the convergence and the versatility of topology optimization methods for fluidic systems can be improved by employing a parametric level-set description. In general, level-set methods allow controlling the smoothness of boundaries, yield a non-local influence of design variables, and decouple the material description from the flow field discretization. The parametric level-set method used in this study utilizes a material distribution approach to represent flow boundaries, resulting in a non-trivial mapping between design variables and local material properties. Using a hydrodynamic lattice Boltzmann method, we study the performance of our level-set approach in comparison to a traditional material distribution approach. By numerical examples, the parametric level-set approach is validated through comparison with traditional material distribution based methods. While the parametric level-set approach leads to similar optimal designs, the present study reveals no general improvements of the convergence of the optimization process and of the robustness of the nonlinear flow analyses when compared to the traditional material distribution approach. Instead, our numerical experiment suggests that a continuation method operating on the volume constraint is needed to achieve optimal designs at higher Reynolds numbers.


Generalized shape optimization Topology optimization Lattice Boltzmann method Adjoint sensitivity analysis Low Reynolds number flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems. Struct Multidiscipl Optim 35(2):175–180CrossRefMathSciNetGoogle Scholar
  2. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393zbMATHCrossRefMathSciNetGoogle Scholar
  3. Allaire G, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80zbMATHMathSciNetGoogle Scholar
  4. Angot P, Bruneau CH, Fabrie P (1999) A penalization method to take into account obstacles in viscous flows. Numer Math 81:497–520zbMATHCrossRefMathSciNetGoogle Scholar
  5. Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a lattice Boltzmann fluid with boundaries. Phys Fluids 13(11):3452–3459CrossRefGoogle Scholar
  7. Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res Sect A 1:27CrossRefGoogle Scholar
  8. Burger M, Osher S (2005) A survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16:263–301zbMATHCrossRefMathSciNetGoogle Scholar
  9. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364CrossRefMathSciNetGoogle Scholar
  10. Cunha AL (2004) A fully Eulerian method for shape optimization with applications to Navier-Stokes flows. Ph.D. thesis, Department of Civil and Environmental Engineering, Carnegie Mellon University, PittsburghGoogle Scholar
  11. de Ruiter MJ, van Keulen F (2004) Topology optimization using a topology description function. Struct Multidiscipl Optim 26:406–416CrossRefGoogle Scholar
  12. Duan X, Ma Y, Zhang R (2008) Optimal shape control of fluid flow using variational level set method. Phys Lett A 372(9):1374–1379. doi: 10.1016/j.physleta.2007.09.070 CrossRefMathSciNetGoogle Scholar
  13. Evgrafov A, Pingen G, Maute K (2006) Topology optimization of fluid problems by the lattice Boltzmann method. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures, machines and materials: status and perspectives. Springer, Dordrecht, pp 559–568CrossRefGoogle Scholar
  14. Gersborg-Hansen A, Sigmund O, Haber R (2005) Topology optimization of channel flow problems. Struct Multidiscipl Optim 30(3):181–192CrossRefMathSciNetGoogle Scholar
  15. Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76:1–26zbMATHCrossRefMathSciNetGoogle Scholar
  16. Mohammadi B, Pironneau O (2008) Theory and practice of optimal shape design. Eur J Comput Mech 17(1–2):13–30Google Scholar
  17. Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60:2289–2312zbMATHCrossRefGoogle Scholar
  18. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. In: Applied mathematical science, vol 153. Springer, Berlin Heidelberg New York, iSBN 0-387-95482-1Google Scholar
  19. Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 78:12–49CrossRefMathSciNetGoogle Scholar
  20. Pingen G (2008) Optimal design for fluidic systems: topology and shape optimization with teh lattice boltzmann method. Ph.D. thesis, University of Colorado at BoulderGoogle Scholar
  21. Pingen G, Evgrafov A, Maute K (2007a) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidiscipl Optim 34:507–524CrossRefMathSciNetGoogle Scholar
  22. Pingen G, Waidmann M, Evgrafov A, Maute K (2007b) Parametric-level-set approach to topology optimization of fluids with the Navier-Stokes and lattice Boltzmann equations. In: Proceedings of WCSMOGoogle Scholar
  23. Pingen G, Evgrafov A, Maute K (2008) Parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput Fluids. doi: 10.1016/j.compfluid.2008.10.002
  24. Sethian JA (1999) Level set methods and fast marching methods, evolving interfaces in computional geometry, fluid mechanics, computer vision, and material science. In: Cambridge monographs on applied and computational mathematics, vol 3, 2nd edn. Cambridge University Press, BerkeleyGoogle Scholar
  25. Sethian JA, Smerenka P (2003) Level set methods for fluid interfaces. Annu Rev Fluid Mech 35:341–372CrossRefGoogle Scholar
  26. Sethian JA, Wiegemann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528zbMATHCrossRefMathSciNetGoogle Scholar
  27. Spaid MAA, Phelan FR (1997) Lattice Boltzmann methods for modelling microscale flow in fibrous porous media. Phys Fluids 9(9):2468–2474zbMATHCrossRefMathSciNetGoogle Scholar
  28. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. In: Numerical mathematics and scientific computation. Oxford University Press, OxfordGoogle Scholar
  29. Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Rozvany G, Olhoff N (eds) First world congress of structural and multidisciplinary optimization. Pergamon, Oxford, pp 9–16Google Scholar
  30. Terrel AR, Long KR (2006) Evaluation of level set topology optimization formulations for design of minimum-dispersion microfluidic devices. In: NECIS Summer Proceedings 2006, pp 158–167Google Scholar
  31. Waidmann M (2007) A pseudo-level-set method for topology optimization of flows based on Navier-Stokes and lattice Boltzmann solvers. Master’s thesis, University of Colorado at Boulder, ColoradoGoogle Scholar
  32. Wang MY, Wang S (2005) Parametric shape and topology optimization with radial basis functions. In: IUTAM symposium on topological design optimization of structures, machines and materials, pp 13–22Google Scholar
  33. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246zbMATHCrossRefMathSciNetGoogle Scholar
  34. Wei P, Wang MY (2006) Parametric structural shape and topology optimization method with radial basis functions and level-set method. In: Proceedings of IDETC/CIE 2006, ASME 2006 international design engineering technical conferencesGoogle Scholar
  35. Xia Q, Wang MY, Wang S, Chen S (2006) Semi-Lagrange method for level-set-based structural topology and shape optimization. In: Structural and multidisciplinary optimization, vol 31. Springer, Berlin Heidelberg New York, pp 419–429. doi: 10.1007/s00158-005-0597-y Google Scholar
  36. Yu D, Mei R, Luo LS, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 39:329–367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Georg Pingen
    • 1
    Email author
  • Matthias Waidmann
    • 2
  • Anton Evgrafov
    • 3
  • Kurt Maute
    • 4
  1. 1.Mechanical and Aerospace EngineeringUniversity of ColoradoColorado SpringsUSA
  2. 2.Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany
  3. 3.Department of MathematicsTechnical University of DenmarkLyngbyDenmark
  4. 4.Aerospace EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations