Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm

  • J. M. Herrero
  • S. García-Nieto
  • X. Blasco
  • V. Romero-García
  • J. V. Sánchez-Pérez
  • L. M. Garcia-Raffi
Industrial Application


This paper shows a promising method for acoustic barrier design using a new acoustic material called Sonic Crystals (SCs). The configuration of these SCs is set as a multiobjective optimization problem which is very difficult to solve with conventional optimization techniques. The paper presents a new parallel implementation of a Multiobjective Evolutionary Algorithm called ev-MOGA (also known as Open image in new window) and its application in a complex design problem. ev-MOGA algorithm has been designed to converge towards a reduced, but well distributed, representation of the Pareto Front (solution of the multiobjective optimization problem). The algorithm is presented in detail and its most important properties are discussed. To reduce the ev-MOGA computational cost when objective functions are substantial, a basic parallelization has been implemented on a distributed platform.


Evolutionary multiobjective optimization Sonic cristals Parallel MOEA Acoustic attenuation 


  1. Alander J (2002) An indexed bibliography of genetic algorithms & pareto and constrainedoptimization. Tech Rep, Dpt of Information Technology, University of VaasaGoogle Scholar
  2. Cantú-Paz E (1997) A survey of parallel genetic algorithms. Tech Rep 97003, Illimois Genetic Algorithms LaboratotyGoogle Scholar
  3. Cervera F, Sanchis L, Sánchez-Pérez JV, Martínez-Sala R, Rubio C, Meseguer F, López C, Caballero D, Sánchez-Dehesa J (2002) Refractive acoustic devices for airborne sound. Phys Rev Lett 88:0239021–0239024Google Scholar
  4. Chen Y, Ye Z (2001) Theoretical analysis of stop bands in two-dimensional periodic scattering arrays. Phys Rev E 64:036616CrossRefGoogle Scholar
  5. Coello C, Toscano G, Mezura E (2005) Information processing with evolutionary algorithms. In: Grana M, Duro R, d’Anjou A, Wang PP (eds) Information processing with evolutionary algorithms: from industrial applicationsto academic speculations. Springer, New York, pp 213–231Google Scholar
  6. Coello C, Veldhuizen D, Lamont G (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, DordrechtMATHGoogle Scholar
  7. Deb K (2007) Current trends in evolutionary multi-objective optimization. Int J Simul Multidiscipl Des Optim 1:1–8MATHCrossRefGoogle Scholar
  8. Eshelman LJ (1991) The chc adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Proceedings of the first workshop on foundations of genetic algorithms. Morgan Kaufmann, San Francisco, pp 265–283Google Scholar
  9. Fonseca C, (1995) Multiobjective genetic algorithms with application to control engineeringproblems. PhD thesis, Dpt of Automatic Control and Systems Engineering, University of SheffieldGoogle Scholar
  10. Fuster E, Romero-García V, García-Raffi LM, Sánchez-Pérez EA, Sopena M, Sánchez-Pérez JV (2006) A phenomenological model for sonic crystals based on artificial neural networks. J Acoust Soc Am 120(2):1–6Google Scholar
  11. García-Pablos D, Sigalas M, de Espinosa FM, Torres M, Kafesaki M, García, N (2000) Theory and experiments on elastic band gaps. Phys Rev Lett 84:4349–4352CrossRefGoogle Scholar
  12. Gazonas GA, Weile DS, Wildman R, Mohan A (2006) Genetic algorithm optimization of phononic bandgap structures. Int J Solids Struct 43:5851–5866MATHCrossRefGoogle Scholar
  13. Hakkansson A, Cervera F, Sánchez-Dehesa J (2005) Sound focusing by flat acoustic lenses without negative refraction. Appl Phys Lett 86:0541021–0541023CrossRefGoogle Scholar
  14. Herrero J, Blasco X, Martínez M, Ramos C, Sanchis J (2007) Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms. Biosyst Eng 98(3):335–346CrossRefGoogle Scholar
  15. Herrero JM (2006) Non-linear robust identification using evolutionary algorithms. PhD thesis, Universidad Politécnica de Valencia, ValenciaGoogle Scholar
  16. Hussein MI, Hamza K, Hulbert GM, Saitou K (2007) Optimal synthesis of 2d phononic crystals for broadband frequency isolation. Waves Random Complex Media 17(4):491–510CrossRefMathSciNetGoogle Scholar
  17. Hussein MI, Hamza K, Hulbert GM, Scott RA, Saitou K (2006) Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct Multidisc Optim 31:60–75CrossRefGoogle Scholar
  18. Kafesaki M, Economou E (1999) Multiple scattering theory for three-dimensional periodic acoustic composites. Phys Rev B 60:11993CrossRefGoogle Scholar
  19. Kohn W, Rostoker N (1954) Solution of the schrodinger equation in periodic lattices with an aplication to metallic lithium. Phys Rev 94:1111MATHCrossRefGoogle Scholar
  20. Korringa J (1947) On th calculation of the energy of a bloch wave in a metal. Physica XIII:392CrossRefMathSciNetGoogle Scholar
  21. Kushwaha M (1997) Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Appl Phys Lett 70:3218–3220CrossRefGoogle Scholar
  22. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10(3):263–282CrossRefGoogle Scholar
  23. Martínez-Sala R, Sancho J, Sánchez J, Gómez V, Llinares J, Meseguer F (1995) Sound attenuation by sculpture. Nature 378:241CrossRefGoogle Scholar
  24. Miettinen KM (1998) Nonlinear multiobjective optimization. Kluwer, DordrechtGoogle Scholar
  25. Mishra S, Deb K, Mohan M (2005) Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol Comput 13(4):501–526CrossRefGoogle Scholar
  26. Romero-García V, Fuster E, García-Raffi LM, Sánchez-Pérez EA, Sopena M, Llinares J, Sánchez-Pérez JV (2006) Band gap creation using quasiordered structures based on sonic crystals. Appl Phys Lett 88:1741041–17410413CrossRefGoogle Scholar
  27. Sánchez-Pérez JV, Caballero D, Martínez-Sala R, Rubio C, Sánchez-Dehesa J, Meseguer F, Llinares J, Gálvez F (1998) Sound attenuation by a two-dimensional array of rigid cylinders. Phys Rev Lett 80:5325–5328CrossRefGoogle Scholar
  28. Sánchez-Pérez JV, Rubio C, Martínez-Sala R, Sánchez-Grandia R, Gómez V (2002) Acoustic barriers based on periodic arrays of scatterers. Appl Phys Lett 27:5240–5242CrossRefGoogle Scholar
  29. Sanchis L, Hakkansson A, López-Zanón D, Bravo-Abad J, Sánchez-Dehesa J (2004) Integrated optical devices design by genetic algorithm. Appl Phys Lett 84:4460–4462CrossRefGoogle Scholar
  30. Shen M, Cao W (2001) Acoustic band-gap engineering using finite-size layered structures of multiple periodicity. Appl Phys Lett 75:3713–3715CrossRefGoogle Scholar
  31. Sigalas M, Economou E (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377CrossRefGoogle Scholar
  32. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology ZurichGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. M. Herrero
    • 1
  • S. García-Nieto
    • 1
  • X. Blasco
    • 1
  • V. Romero-García
    • 2
  • J. V. Sánchez-Pérez
    • 2
  • L. M. Garcia-Raffi
    • 3
  1. 1.Department of Systems Engineering and ControlPolytechnic University of ValenciaValenciaSpain
  2. 2.Centro de Tecnologías FísicasPolytechnic University of ValenciaValenciaSpain
  3. 3.Instituto Universitario de Matemática Pura y AplicadaPolytechnic University of ValenciaValenciaSpain

Personalised recommendations