Optimization of a mechanical test on composite plates with the virtual fields method

  • Kashif Syed-Muhammad
  • Evelyne Toussaint
  • Michel Grédiac
Research Paper

Abstract

This paper deals with the optimization of a mechanical test performed on a composite plate specimen. Heterogeneous stress fields which take place in the plate specimen are processed with the virtual fields method to identify the bending rigidities. Various design parameters such as the support locations or the specimen shape are optimized in the present work. Results obtained are discussed and the best compromise between the quality of the results and the convenience in the practical realization of the tests is proposed.

Keywords

Optimization Virtual fields method Plates Composites Testing 

References

  1. Amiot F et al (2007) Identification of elastic proerties and loading fields from full-field displacement measurements. Int J Solids Struct 44(9):2863–2887MATHCrossRefGoogle Scholar
  2. Avril S et al (2004) Sensitivity of the virtual fields method to noisy data. Comput Mech 34:439–452MATHCrossRefGoogle Scholar
  3. Dym CL, Shames IH (1973) Solid mechanics: a variational approach. McGraw Hill, LondonGoogle Scholar
  4. Grédiac M (1989) Principe des travaux virtuels et identification/Pinciple of virtual work and identification. C R Acad Sci 309:1–5 (in French with abridged English version)MATHGoogle Scholar
  5. Grédiac M et al (2002) Special virtual fields for the direct determination of material parameters with the virtual fields method. 1- Principle and definition. Int J Solids Struct 39:2691–2705MATHCrossRefGoogle Scholar
  6. Grédiac M et al (2003) Special virtual fields for the direct determination of material parameters with the virtual fields method. 3-Application to the bending rigidities of anisotropic. Int J Solids Struct 40:2401–2419MATHCrossRefGoogle Scholar
  7. Guo B (2007) Identification simultanée des paramètres de rigidité et d’amortissement de plaques isotropes minces en vibration par la méthode des champs virtuels/Simultaneous identification of stiffness and damping parameters of thin anisotropic plates with the virtual fields method. PhD Thesis, ENSAM (in French with English abstract)Google Scholar
  8. Ikehata M (1990) Inversion formulas for the linearized problem for an inverse boundary value problem in elastic prospection. SIAM J Appl Math 50:1635–1644. doi:10.1137/0150097 MATHCrossRefMathSciNetGoogle Scholar
  9. Kleuter B et al (2007) Generalized parameter identification for finite viscoelasticity. Comput Method Appl Mech Eng 196:3315–3334CrossRefMathSciNetGoogle Scholar
  10. Kobayashi AS (1993) Handbook on experimental mechanics, 2nd edn. Wiley, New YorkGoogle Scholar
  11. Le Magorou L et al (2002) Identification of constitutive laws for wood-based panels by means of an inverse method. Compos Sci Technol 62(4):591–596CrossRefGoogle Scholar
  12. Leknitskii SG (1968) Anisotropic plates. Gordon and Breach, New YorkGoogle Scholar
  13. Mathias JD et al (2006) Applying a genetic algorithm to the optimization of composite patches. Comput Struct 84:823–834CrossRefGoogle Scholar
  14. Meuwissen MHH et al (1998) Determination of the elasto-plastic properties of aluminium using a miwed numerical-experimental method. J Mater Process Technol 75(1–3):204–211CrossRefGoogle Scholar
  15. Périé J-N et al (2002) Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp Mech 42(3):318–328. doi:10.1007/BF02410989 CrossRefGoogle Scholar
  16. Pierron F et al (1998) Whole-field assessment of the effects of boundary conditions on the strain field in off-axis tensile testing of unidirectional composites. Compos Sci Technol 58:1939–1947CrossRefGoogle Scholar
  17. Pierron F et al (2007) Identification of the orthotropic elastic stiffnesses of composites with the virtual fields method: Sensitivity study and experimental validation. Strain 43(3):250–259. doi:10.1111/j.1475-1305.2006.00283.x CrossRefGoogle Scholar
  18. Réthoré J et al (2008) Noise-robust stress intensity factor determination from kinematic field measurements. Eng Fract Mech (in press)Google Scholar
  19. Surrel Y (2004) Deflectometry: a simple and efficient noninterferometric method for slpoe measurement. In: SEM Annual Congress on Experimental Mechanics, Costa Mesa, June 2004Google Scholar
  20. Surrel Y et al (1999) Phase-stepped deflectometry applied to shape measurement of bent plates. Exp Mech 39(1):66–70CrossRefGoogle Scholar
  21. Syed-Muhammad K et al (2008) Characterization of composite plates using the virtual fields method with optimized loading conditions. Compos Struct (in press)Google Scholar
  22. Toussaint E et al (2006) The virtual fields method with piecewise virtual fields. Int J Mech Sci 48:256–264CrossRefGoogle Scholar
  23. Zienkiewicz OC (1977) The virtual fields method with piecewise virtual fields. The finite element method. McGraw-Hill, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Kashif Syed-Muhammad
    • 1
  • Evelyne Toussaint
    • 1
  • Michel Grédiac
    • 1
  1. 1.Laboratoire de Mécanique et Ingénieries (LaMI)Université Blaise Pascal - Institut Français de Mécanique AvancéeAubière CedexFrance

Personalised recommendations