Structural and Multidisciplinary Optimization

, Volume 37, Issue 3, pp 217–237 | Cite as

A critical review of established methods of structural topology optimization

Forum

Abstract

The aim of this article is to evaluate and compare established numerical methods of structural topology optimization that have reached the stage of application in industrial software. It is hoped that our text will spark off a fruitful and constructive debate on this important topic.

Keywords

Topology optimization SIMP method Stress constraints Compliance constraints Checkerboard control Perforated plates Trusses Michell structures SERA method ESO method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaire G (2002) Shape optimization by the homogenization method. Springer, New YorkMATHGoogle Scholar
  2. Allaire G, Kohn RV (1993a) Explicit bounds on elastic energy of a two-phase composite in two space dimensions. Q Appl Math 51:675–699MATHMathSciNetGoogle Scholar
  3. Allaire G, Kohn RV (1993b) Topology optimization and optimal shape design using homogenization. Proceedings of NATO ARW Topology Design of Structures (Sesimbra 1992). Kluwer, Dordrecht, pp 207–218Google Scholar
  4. Allaire G, Jouve F, Toader AM (2002) A level set method for shape optimization. Comptes Rendus de l’Acad. des Sci 334:1125–1130MATHMathSciNetGoogle Scholar
  5. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comp Phys 104:363–393MathSciNetCrossRefGoogle Scholar
  6. Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRefGoogle Scholar
  7. Bendsoe MP (1995) Optimization of structural topology, shape and material. Springer, BerlinGoogle Scholar
  8. Bendsoe MP, Haber RB (1993) The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study. Struct Optim 6:263–267CrossRefGoogle Scholar
  9. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRefGoogle Scholar
  10. Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654Google Scholar
  11. Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinGoogle Scholar
  12. Bendsoe MP, Diaz A, Kikuchi N (1993) Topology and generalized layout optimization of elastic structures. Proceedings of NATO ARW Topology Design of Structures (Sesimbra 1992). Kluwer, Dordrecht, pp 207–218Google Scholar
  13. Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57:1413–1430MATHCrossRefGoogle Scholar
  14. Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures in topology optimization. Struct Multidisc Optim 19:93–104CrossRefGoogle Scholar
  15. Chern JM, Prager W (1972) Optimal design of trusses for alternative loads. Ing Arch 41:225–231MATHCrossRefGoogle Scholar
  16. Diaz AR, Bendsoe MP (1992) Shape optimization of structures for multiple loading situations using a homogenization method. Struct Optim 4:17–22CrossRefGoogle Scholar
  17. Diaz AR, Kikuchi N (1992) Solution to shape and topology eigenvalue problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502MATHMathSciNetCrossRefGoogle Scholar
  18. Diaz AR, Lipton R (1997) Optimal material layout for 3D elastic structures. Struct Optim 13:60–64CrossRefGoogle Scholar
  19. Diaz AR, Lipton R (2000) Optimal material layout in 3D elastic structures subjected to multiple loads. Mech Struct Mach 28:219–236CrossRefGoogle Scholar
  20. Diaz AR, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10:40–45CrossRefGoogle Scholar
  21. Du J, Olhoff N (2004a) Topological optimization of continuum structures with design-dependent surface loads—Part I: New computational approach for 2D problems. Struct Multidisc Optim 27:151–165MathSciNetCrossRefGoogle Scholar
  22. Du J, Olhoff N (2004b) Topological optimization of continuum structures with design-dependent surface loads—Part II: Algorithm and examples for 3D problems. Struct Multidisc Optim 27:166–177MathSciNetCrossRefGoogle Scholar
  23. Du J, Olhoff N (2007a) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidisc Optim 33:305–321MathSciNetCrossRefGoogle Scholar
  24. Du J, Olhoff N (2007b) Topological design of freely vibrating continuum structures for maximum values of single and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34:91–110MathSciNetCrossRefGoogle Scholar
  25. Edwards CS, Kim HA, Budd CJ (2006) Investigation on the validity of topology optimization methods. Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Conference. Paper No. AIAA 2006-1984. Newport, Rhode Island pp 1–15, May 2006Google Scholar
  26. Edwards CS, Kim HA, Budd CJ (2007) An evaluative study on ESO and SIMP for optimising a cantilever tie-beam. Struct Multidisc Optim 34:403–414CrossRefGoogle Scholar
  27. Fleury C (1982) Reconciliation of mathematical programming and optimality criteria approaches to structural optimization. In: Morris AJ (ed) Foundations of structural optimization: a unified approach. Wiley, Chichester, pp 363–404Google Scholar
  28. Fleury C (1989) CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct Optim 1:81–89CrossRefGoogle Scholar
  29. Fuchs MB, Jiny S, Peleg K (2005) The SRV constraint for 0/1 topological design. Stuct Multidisc Optim 30:320–326CrossRefGoogle Scholar
  30. Gaspar Z, Logo J, Rozvany GIN (2002) Addenda and corrigenda to “Aims, scope, methods, history and unified terminology of computer-aided optimization in structural mechanics”. Struct Multidisc Optim 24:338–342CrossRefGoogle Scholar
  31. Haber RB, Bendsoe MP, Jog CS (1996) A new approach to variable topology shape design using constraint on the perimeter. Struct Optim 11:1–12CrossRefGoogle Scholar
  32. Haftka RT, Gurdal Z (1992) Elements of structural optimization. Kluwer, DordrechtMATHGoogle Scholar
  33. Hajela P, Lee E (1995) Genetic algorithms in truss topology optimization. Int J Solids Struct 32:3341–3357MATHMathSciNetCrossRefGoogle Scholar
  34. Hammer VB, Olhoff N (1999) Topology optimization with design dependent loads. In: Bloebaum CL (ed) Proceedings of WCSMO-3 (CD-Rom)Google Scholar
  35. Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subject to pressure loading. Struct Multidisc Optim 19:85–92CrossRefGoogle Scholar
  36. Hegemier GA, Prager W (1969) On Michell trusses. Int J Mech Sci 11:209–215MATHCrossRefGoogle Scholar
  37. Hemp WS (1973) Optimum structures. Clarendon, OxfordGoogle Scholar
  38. Huang X, Xie YM (2007) A new look at ESO and BESO optimization methods. Struct Multidisc Optim 35(1):89–92MathSciNetCrossRefGoogle Scholar
  39. Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84:2022–2024CrossRefGoogle Scholar
  40. Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22:1191–1198CrossRefGoogle Scholar
  41. Jog CS, Haber RB, Bendsoe MP (1994) Topology design with optimized self-adaptive materials. Int J Numer Methods Eng 37:1323–1350MATHMathSciNetCrossRefGoogle Scholar
  42. Kharmanda G, Olhoff N (2004) Reliability based topology optimization. Struct Multidisc Optim 26:295–307MathSciNetCrossRefGoogle Scholar
  43. Kohn RV, Strang G (1986) Optimal design and relaxation of variational problems I, II, III. Commun Pure Appl Math 39:113–137, 139–182, 353–377MATHMathSciNetCrossRefGoogle Scholar
  44. Lewinski T, Rozvany GIN (2007) Exact analytical solutions for some popular benchmark problems in topology optimization II: three-sided polygonal supports. Struct Multidisc Optim 33:337–350MathSciNetCrossRefGoogle Scholar
  45. Lewinski T, Rozvany GIN (2008a) Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains. Struct Multidisc Optim 35:165–174MathSciNetCrossRefGoogle Scholar
  46. Lewinski T, Rozvany GIN (2008b) Exact analytical solutions for some popular benchmark problems in topology optimization IV: square-shaped line support. Struct Multidisc Optim DOI  10.1007/s00158-007-0205-4
  47. Lewinski T, Zhou M, Rozvany GIN (1994) Extended exact solutions for least-weight truss layouts. Part II: unsymmetric cantilevers. Int J Mech Sci 36:375–398MATHCrossRefGoogle Scholar
  48. Ling QQ, Steven GP (2002) A performance-based optimization method for topology design of continuum structures with mean compliance constraint. Comp Methods Appl Mech Eng 191:1471–1489CrossRefGoogle Scholar
  49. Lurie K, Cherkaev AV (1986) Effective characteristics of composite materials and optimal design of structural elements. Uspekhi Mekhaniki 9:3–81 (in Russian)MathSciNetGoogle Scholar
  50. Martinez JM (2005) A note on the theoretical convergence properties of the SIMP method. Struct Multidisc Optim 29:319–323CrossRefGoogle Scholar
  51. Mattheck C, Burkhardt S (1990) A new method of structural optimization based on biological growth. Int J Fatigue 12:185–190CrossRefGoogle Scholar
  52. Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 37:1767–1777CrossRefGoogle Scholar
  53. Maute K, Ramm E (1998) Adaptive topology optimization. Struct Optim 10:100–112CrossRefGoogle Scholar
  54. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15:81–90CrossRefGoogle Scholar
  55. McConnell RE (1974) Least weight frameworks for loads across a span. J Eng Mech ASCE, EM 5:885–891Google Scholar
  56. Michell AGM (1904) The limits of economy of material in frame structures. Phil Mag 8:589–597Google Scholar
  57. Mlejnek HP (1992) Some exploration of the genesis of structures. In: Bendsoe MP, Mota Soares CA (eds) Topology design of structures. Proceedings of NATO ARW (Sesimbra, Portugal). Kluwer, Dordrecht, pp 287–300Google Scholar
  58. Norato JA, Bendsoe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidisc Optim 33:375–386MathSciNetCrossRefGoogle Scholar
  59. Olhoff N, Du J (2006) Topology optimization of bi-material structures with respect to sound radiation. In: Bendsoe MP, Olhoff N, Sigmund O (eds) Proceedings of IUTAM Symposium on topological design optimization of structures, machines and materials, Copenhagen, 2005. Springer, Heidelberg, pp 43–52CrossRefGoogle Scholar
  60. Olhoff N, Bendsoe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comp Methods Appl Mech Eng 89:259–279CrossRefGoogle Scholar
  61. Pedersen P (2000) On optimal shapes in materials and structures. Struct Multidisc Optim 19:169–182CrossRefGoogle Scholar
  62. Pedersen CBW, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. In: Bendsoe MP, Olhoff N, Sigmund O (eds) Topology design optimization of structures, machines and materials (Proceedings of IUTAM Symposium, Copenhagen, 2006). Springer, Dordrecht, pp 229–238CrossRefGoogle Scholar
  63. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41:1417–1434MATHMathSciNetCrossRefGoogle Scholar
  64. Pomezanski V, Querin OM, Rozvany GIN (2005) CO-SIMP: extended SIMP algorithm with direct COrner COntact COntrol. Struct Multidisc Optim 30:164–168CrossRefGoogle Scholar
  65. Poulsen TA (2002) A simple scheme to prevent checkerboard patterns and one node connected hinges in topology optimization. Struct Multidisc Optim 24:396–399CrossRefGoogle Scholar
  66. Prager W, Rozvany GIN (1977) Optimization of the structural geometry. In: Bednarek AR, Cesari L (eds) Dynamical systems (Proceedings of the International Conference, Gainsville, Florida). Academic, New York, pp 265–293Google Scholar
  67. Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidisc Optim 21:159–163CrossRefGoogle Scholar
  68. Rossow MP, Taylor JE (1973) A finite element method for the optimal design of variable thickness sheets. AIAA J 11:1566–1569CrossRefGoogle Scholar
  69. Rozvany GIN (1972a) Grillages of maximum strength and maximum stiffness. Int J Mech Sci 14:1217–1222CrossRefGoogle Scholar
  70. Rozvany GIN (1972b) Optimal load transmission by flexure. Comput Methods Appl Mech Eng 1:253–263CrossRefGoogle Scholar
  71. Rozvany GIN (1976) Optimal design of flexural systems. Pergamon, Oxford (Russian translation Stroiizdat, Moscow, 1980)Google Scholar
  72. Rozvany GIN (1989) Structural design via optimality criteria. Kluwer, DordrechtMATHGoogle Scholar
  73. Rozvany GIN (1993) Layout theory for grid-like structures. In: Bendsoe MP, Mota Soares CA (eds) Topology design of structures (Proceedings of NATO ARW, Sesimbra, Portugal). Kluwer, Dordrecht, pp 251–272Google Scholar
  74. Rozvany GIN (1998) Exact analytical solution for some popular benchmark problems in topology optimization. Struct Optim 15:42–47CrossRefGoogle Scholar
  75. Rozvany GIN (2001a) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90–108CrossRefGoogle Scholar
  76. Rozvany GIN (2001b) Stress ratio and compliance based methods in topology optimization—a critical review. Struct Multidisc Optim 21:109–119CrossRefGoogle Scholar
  77. Rozvany GIN (2008) Traditional vs. extended optimality in topology optimization. DOI 10.1007/s00158-008-0231-x
  78. Rozvany GIN, Querin OM (2001) Present limitations and possible improvements of SERA (Sequential Element Rejections and Admissions) methods in topology optimization. Proceedings of WCSMO 4, Dalian, ChinaGoogle Scholar
  79. Rozvany GIN, Querin OM (2002a) Combining ESO with rigorous optimality criteria. Int J Veh Des 28:294–299CrossRefGoogle Scholar
  80. Rozvany GIN, Querin OM (2002b) Theoretical foundations of sequential element rejections and admissions (SERA) methods and their computational implementations in topology optimization. Proceedings of the 9th AIAA/ISSMO Symposium on Multidisc. Anal and Optim. (held in Atlanta, Georgia), AIAA, Reston, VAGoogle Scholar
  81. Rozvany GIN, Querin O (2004) Sequential element rejections and admissions (SERA) method: applications to multiconstraint problems. Proceedings of the 10th AIAA/ISSMO Multidisc. Anal. Optim. Conference, Albany, NY, Aug.–Sept. 2004Google Scholar
  82. Rozvany GIN, Zhou M (1991) Applications of the COC algorithm in layout optimization. In: Eschenauer H, Matteck C, Olhoff N (eds) Engineering optimization in design processes. Proceedings of the International Conference (Karlsruhe, Germany, Sept 1990). Springer, Berlin, pp 59–70Google Scholar
  83. Rozvany GIN, Zhou M (1993) Layout and generalized shape optimization by iterative COC methods. In: Rozvany GIN (ed) Optimization of large structural systems. Proceedings of NATO ASI (Berchtesgaden 1991). Kluwer, Dordrecht, pp 103–120Google Scholar
  84. Rozvany GIN, Zhou M (1994) Optimality criteria methods for large structural systems. In: Adeli H (ed) Advances in design optimization. Chapman & Hall, London, pp 41–108Google Scholar
  85. Rozvany GIN, Olhoff N, Bendsoe MP, Ong TG, Szeto WT (1985) Least-weight design of perforated elastic plates. DCAMM Report No. 306, Techn. Univ. Denmark, LyngbyGoogle Scholar
  86. Rozvany GIN, Olhoff N, Bendsoe MP, Ong TG, Szeto WT (1987) Least-weight design of perforated elastic plates I, II. Int J Solids Struct 23:521–536, 537–550MATHCrossRefGoogle Scholar
  87. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254CrossRefGoogle Scholar
  88. Rozvany GIN, Zhou M, Sigmund O (1994) Optimization of topology. In: Adeli H (ed) Advances in design optimization. Chapman & Hall, London, pp 340–399Google Scholar
  89. Rozvany GIN, Bendsoe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev ASME 48:41–119CrossRefGoogle Scholar
  90. Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2002a) Extended optimality in topology design. Struct Multidisc Optim 24:257–261CrossRefGoogle Scholar
  91. Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2002b) Checkerboards, element chains and hinges in topology optimization: causes and prevention. In: Gosling P (ed) Proceedings of the 4th ASMO-UK/ISSMO Conference. Univ. Newcastle-upon-Tyne, UK, pp 149–159Google Scholar
  92. Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2003) Weight increasing effect of topology simplification. Struct Multidisc Optim 25:459–465CrossRefGoogle Scholar
  93. Rozvany GIN, Pomezanski V, Querin OM, Gaspar Z, Logo J (2004) Corner contact suppression in topology optimization. In: Querin OM, Sienz J, Toropov VV, Goslong P (eds) Extended Abstracts 5th ASMO UK/ISSMO Conference, pp 33–40Google Scholar
  94. Rozvany GIN, Pomezanski V, Gaspar Z, Querin OM (2005a) Some pivotal issues in structural topology optimization. In: Herskovits J, Mazorche S, Canelas A (eds) Proceedings of WCSMO 6 (CD-ROM), Rio de Janeiro, Brasil, 2005, CD paper, ISBN 85-285-0070-5Google Scholar
  95. Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2005b) Erratum for “Extended optimality in topology design”. Struct Multidisc Optim 30:504CrossRefGoogle Scholar
  96. Rozvany GIN, Lewinski T, Querin OM, Logo J (2006a) Quality control in topology optimization using analytically derived benchmarks. Proceedings of the 11th AIAA/ISSMO Multidisc. Anal. Opt. Conf., Portsouth, Virginia, USA, AIAA paper No.: AIAA 2006-6940, CD paper, 11 pp Collection of Technical Papers—11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 1, pp 484–494Google Scholar
  97. Rozvany GIN, Pomezanski V, Querin OM, Gaspar Z, Logo J (2006b) Some basic issues of topology optimization. In: Bendsoe MP, Olhoff N, Sigmund O. Proceedings of IUTAM Symposium on topology design optimization of structures, machines and materials. Springer, Heidelberg, pp 77–86CrossRefGoogle Scholar
  98. Sankaranarayanan S, Haftka RT, Kapania RK (1992) Truss topology optimization with simultaneous analysis and design. Proceedings of 33rd AIAA/ASME/ASCE/AHS/ASC Struct Dyn Mat Conf (Dallas). AIAA, Washington, DC, pp 2576–2585Google Scholar
  99. Save M, Prager W (1985) Structural Optimization—vol 1: optimality criteria. Plenum, New YorkMATHGoogle Scholar
  100. Schnack E, Spörl V, Iancu G (1988) Gradientless shape optimization with FEM. VDI Research Report 647/88. VDI-Verlag, DüsseldorfGoogle Scholar
  101. Sethian JA, Wiegman A (2000) Structural boundary design via level set and immersed interface methods. J Comp Phys 163:489–528MATHCrossRefGoogle Scholar
  102. Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Dept Solid Mech, Univ DenmarkGoogle Scholar
  103. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:493–524CrossRefGoogle Scholar
  104. Sigmund O (2001a) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127CrossRefGoogle Scholar
  105. Sigmund O (2001b) Design of multiphysics actuators using topology optimization. Part II: two-material structures. Comput Methods Appl Mech Eng 190:6605–6627Google Scholar
  106. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33:401–424CrossRefGoogle Scholar
  107. Sigmund O, Jensen JS (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans R Soc A Math Phys Eng Sci 361:1001–1019MATHMathSciNetCrossRefGoogle Scholar
  108. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRefGoogle Scholar
  109. Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. Siam J Control Optim 37:1251–1272MATHMathSciNetCrossRefGoogle Scholar
  110. Stolpe M, Bendsoe MP (2007) A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality, WCSMO-7, Proceedings CD, pp 1–10Google Scholar
  111. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22:116–124CrossRefGoogle Scholar
  112. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MATHMathSciNetCrossRefGoogle Scholar
  113. Svanberg K, Werme M (2005) Hierarchical neighbourhood search method for topology optimization. Struct Multidisc Optim 29:325–340MathSciNetCrossRefGoogle Scholar
  114. Svanberg K, Werme M (2006a) Topology optimization by sequential integer linear programming. In: Bendsoe MP, Olhoff N, Sigmund O (eds) Proceedings of IUTAM Symposium on topological design optimization of structures, machines and materials. Springer, Dordrecht, pp 425–438CrossRefGoogle Scholar
  115. Svanberg K, Werme M (2006b) Topology optimization by neighbourhood search method based on efficient sensitivity calculations. Int J Numer Methods Eng 67:1670–1699MATHMathSciNetCrossRefGoogle Scholar
  116. Svanberg K, Werme M (2007) Sequential integer programming method for stress constrained topology optimization. Struct Multidisc Optim 34:277–299MathSciNetCrossRefGoogle Scholar
  117. Sved G (1954) The minimum weight of certain redundant structures. Aust J appl Sci 5:1–8Google Scholar
  118. Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191:5485–5498MATHCrossRefGoogle Scholar
  119. Tanskanen P (2006) A multiobjective and fixed element based modification of the evolutionary structural optimization method. Comput Methods Appl Mech Eng 196:76–90MATHCrossRefGoogle Scholar
  120. Tcherniak D, Sigmund O (2001) A web-based topology optimization program. Struct Multidisc Optim 22:179–187CrossRefGoogle Scholar
  121. Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MATHMathSciNetCrossRefGoogle Scholar
  122. Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in level-set-based framework of region representation. Struct Multidisc Optim 27:1–19MathSciNetCrossRefGoogle Scholar
  123. Werme M (2006) Globally optimal benchmark solutions to some small scale discretized continuum topology optimization problems. Struct Multidisc Optim 32:259–262CrossRefGoogle Scholar
  124. Xie YM, Steven GP (1992) Shape and layout optimization via an evolutionary procedure. Proceedings of the International Conference Comput. Eng. (Hong Kong), Hong Kong University, p 421Google Scholar
  125. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, LondonMATHGoogle Scholar
  126. Yang XY, Xie YM, Steven GP, Querin OM (1998) Bi-directional evolutionary structural optimization. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium Multidisc Anal. Optim (St. Louis), pp 1449–1457Google Scholar
  127. Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRefGoogle Scholar
  128. Zhou M, Rozvany GIN (1992/1993) DCOC: an optimality criterion method for large systems. Part I: theory. Part II: algorithm. Struct Optim 5:12–25, 6:250–262CrossRefGoogle Scholar
  129. Zhou M, Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidisc Optim 21:80–83Google Scholar
  130. Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21:152–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Structural MechanicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations