Advertisement

Aero-structural optimization using adjoint coupled post-optimality sensitivities

  • Ian R. ChittickEmail author
  • Joaquim R. R. A. Martins
Research Paper

Abstract

A new subspace optimization method for performing aero-structural design is introduced. The method relies on a semi-analytic adjoint approach to the sensitivity analysis that includes post-optimality sensitivity information from the structural optimization subproblem. The resulting coupled post-optimality sensitivity approach is used to guide a gradient-based optimization algorithm. The new approach simplifies the system-level problem, thereby reducing the number of calls to a potentially costly aerodynamics solver. The aero-structural optimization of an aircraft wing is performed using linear aerodynamic and structural analyses, and a performance comparison is made between the new approach and the conventional multidisciplinary feasible method. The new asymmetric suboptimization method is found to be the more efficient approach when it adequately reduces the number of system evaluations or when there is a large enough discrepancy between disciplinary solution times.

Keywords

Aero-structural optimization Subspace optimization Asymmetric suboptimization Coupled post-optimality sensitivity analysis Coupled-adjoint sensitivity analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braun RD, Kroo IM, Gage PJ (1993) Post-optimality analysis in aerospace vehicle design. In: Proceedings of the AIAA aircraft design, systems and operations meeting, Monterey. CA, AIAA, pp 93–3932Google Scholar
  2. Braun RD, Gage PJ, Kroo IM, Sobieski IP (1996) Implementation and performance issues in collaborative optimization. AIAA Paper pp 96–4017Google Scholar
  3. Chattopadhyay A, Pagaldipti N (1995) A multidisciplinary optimization using semi-analytical sensitivity analysis procedure and multilevel decomposition. Comput Math Appl 29(7):55–66zbMATHCrossRefMathSciNetGoogle Scholar
  4. Cramer EJ, Dennis JE, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4(4):754–776, http://citeseer.nj.nec.com/article/cramer93problem.html zbMATHCrossRefMathSciNetGoogle Scholar
  5. Giunta AA (2000) A novel sensitivity analysis method for high fidelity multidisciplinary optimization of aero-structural systems. AIAA Paper 2000–0683Google Scholar
  6. Kodiyalam S, Sobieszczanski-Sobieski J (2002) Bilevel integrated system synthesis with response surfaces. AIAA J 38(8):1479–1485Google Scholar
  7. Kroo IM (1997) MDO for large-scale design. In: Multidisciplinary design optimization: state-of-the-art, SIAM, PhiladelphiaGoogle Scholar
  8. Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostructural design optimization of a supersonic business jet. J Aircr 41(3):523–530CrossRefGoogle Scholar
  9. Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design. Optim Eng 6(1):33–62, http://www.kluweronline.com/issn/1389-4420/contents zbMATHCrossRefGoogle Scholar
  10. Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-step derivative approximation. ACM Trans Math Softw 29(3):245–262, http://doi.acm.org/10.1145/838250.838251 zbMATHCrossRefMathSciNetGoogle Scholar
  11. Maute K, Nikbay M, Farhat C (2001) Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J 39(11):2051–2061Google Scholar
  12. Poon NMK, Martins JRRA (2007) An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct Multidisc Optim 30(1):61–73CrossRefGoogle Scholar
  13. Sobieski IP, Kroo IM (2000) Collaborative optimization using response surface estimation. AIAA J 38(10):1931–1938Google Scholar
  14. Sobieszczanski-Sobieski J (1990) Sensitivity of complex, internally coupled systems. AIAA J 28(1):153–160CrossRefGoogle Scholar
  15. Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Optim 14(1):1–23CrossRefGoogle Scholar
  16. Sobieszczanski-Sobieski J, Agte JS, Robert R, Sandusky J (1998) Bi-level integrated system synthesis (BLISS). AIAA Paper 98–4916Google Scholar
  17. Squire W, Trapp G (1998) Using complex variables to estimate derivatives of real functions. SIAM Rev 40(1):110–112, http://epubs.siam.org/sam-bin/dbq/article/31241 zbMATHCrossRefMathSciNetGoogle Scholar
  18. Tedford NP, Martins JRRA (2006) On the common structure of MDO problems: a comparison of architectures. In: Proceedings of the 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, Portsmouth, VA, AIAA 2006-7080Google Scholar
  19. Tribes C, Dube JF, Trépanier JY (2005) Decomposition of multidisciplinary optimization problems: formulations and application to a simplified wing design. Eng Optim 37(8):775–796CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.University of Toronto Institute for Aerospace StudiesTorontoCanada

Personalised recommendations