Structural and Multidisciplinary Optimization

, Volume 33, Issue 4, pp 285–304

On simultaneous optimization of truss geometry and topology

Research Paper

DOI: 10.1007/s00158-006-0092-0

Cite this article as:
Achtziger, W. Struct Multidisc Optim (2007) 33: 285. doi:10.1007/s00158-006-0092-0

Abstract

The paper addresses the classical problem of optimal truss design where cross-sectional areas and the positions of joints are simultaneously optimized. Se-veral approaches are discussed from a general point of view. In particular, we focus on the difference between simultaneous and alternating optimization of geometry and topology. We recall a rigorously mathematical approach based on the implicit programming technique which considers the classical single load minimum compliance problem subject to a volume constraint. This approach is refined leading to three new problem formulations which can be treated by methods of Mathematical Programming. In particular, these formulations cover the effect of melting end nodes, i.e., vanishing potential bars due to changes in the geometry. In one of these new problem formulations, the objective function is a polynomial of degree three and the constraints are bilinear or just sign constraints. Because heuristics is avoided, certain optimality properties can be proven for resulting structures. The paper closes with two numerical test examples.

Keywords

Truss optimization Geometry optimization Bilevel programming 

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute of Applied MathematicsUniversity of DortmundDortmundGermany

Personalised recommendations