Stress concentration minimization of 2D filets using X-FEM and level set description

  • Laurent Van Miegroet
  • Pierre Duysinx
Research Paper


This paper presents and applies a novel shape optimization approach based on the level set description of the geometry and the extended finite element method (X-FEM). The method benefits from the fixed mesh work using X-FEM and from the curves smoothness of the level set description. Design variables are shape parameters of basic geometric features that are described with a level set representation. The number of design variables of this formulation remains small, whereas global (i.e. compliance) and local constraints (i.e. stresses) can be considered. To illustrate the capability of the method to handle stress constraints, numerical applications revisit the minimization of stress concentration in a 2D filet in tension, which has been previously studied in Pedersen (2003). Our results illustrate the great interest of using X-FEM and level set description together. A special attention is also paid to stress computation and accuracy with the X-FEM.


Shape optimization Topology optimization X-FEM Level set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscipl Optim 28(2-3):87–98CrossRefMathSciNetGoogle Scholar
  2. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393zbMATHCrossRefMathSciNetGoogle Scholar
  3. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013zbMATHCrossRefGoogle Scholar
  4. Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56:609–635zbMATHCrossRefGoogle Scholar
  5. Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57:1177–1196zbMATHCrossRefGoogle Scholar
  6. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224zbMATHCrossRefGoogle Scholar
  7. Bennet JA, Botkin E (1985) Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J 23(3):458–464CrossRefGoogle Scholar
  8. Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44:247–267zbMATHCrossRefGoogle Scholar
  9. Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech 70:10–17CrossRefMathSciNetzbMATHGoogle Scholar
  10. Dankova J, Haslinger J (1996) Numerical realization of a fictitious domain approach used in shape optimization. Part I distributed controls. Appl Math 41:123–147zbMATHMathSciNetGoogle Scholar
  11. Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760zbMATHCrossRefGoogle Scholar
  12. Ding Y (1986) Shape optimization of structures: a literature survey. Comput Struct 24(4):985–1004zbMATHCrossRefGoogle Scholar
  13. Duysinx P, Bendsøe MP (1998) Control of local stresses in topology optimization of continuum structures. Int J Numer Methods Eng 43:1453–1478zbMATHCrossRefGoogle Scholar
  14. Duysinx P, Van Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using X-FEM and level set methods. IUTAM Symposium on Topological Design, Optimization of Structures, Machines and Materials. Springer, Berlin Hiedelberg New York, pp 23–32Google Scholar
  15. Fleury C (1989) Conlin: an efficient dual optimizer based on convex approximation concepts. Struct Multidiscipl Optim 1:81–89Google Scholar
  16. Guétari Y, Le Corre S, Moës N (2005) Étude des possibilités de la méthode X-FEM pour la simulation numérique de la coupe. Mécanique et Industries 6:315–319CrossRefGoogle Scholar
  17. Haftka R, Grandhi R (1986) Structural shape optimization — a survey. Comput Methods Appl Mech Eng 57:91–106zbMATHCrossRefMathSciNetGoogle Scholar
  18. Kim H, Querin OM, Steven GP, Xie YM (2002) Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct Multidiscipl Optim 24:441–448CrossRefGoogle Scholar
  19. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150zbMATHCrossRefGoogle Scholar
  20. Moës N, Gravouil A, Belytschko T (2002) Non-planar 3d crack growth by the extended finite element and level sets — part i: mechanical model. Int J Numer Methods Eng 53:2549–2568zbMATHCrossRefGoogle Scholar
  21. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177zbMATHCrossRefGoogle Scholar
  22. Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60:2289–2312zbMATHCrossRefGoogle Scholar
  23. Novotny AA, Feijoo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192:803–829zbMATHCrossRefMathSciNetGoogle Scholar
  24. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49zbMATHCrossRefMathSciNetGoogle Scholar
  25. Pedersen P (2000) On optimal shapes in materials and structures. Struct Optim 19(3):169–182CrossRefGoogle Scholar
  26. Pedersen P (2003) Optimal designs — structures and materials - problems and tools. ISBN 87-90416-06-6.
  27. Pedersen P, Laursen C (1983) Design for minimum stress concentration by finite element and linear programming. J Struct Mech 10(4):375–391Google Scholar
  28. Pereira J, Fancello E, Barcellos D (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscipl Optim 26(1-2):50–66CrossRefMathSciNetGoogle Scholar
  29. Peterson RE (1953) Stress concentration design factors. Wiley, New YorkGoogle Scholar
  30. Rozvany GIN (1996) Some shortcomings in Michell’s truss theory. Struct Optim 12: 44–250CrossRefGoogle Scholar
  31. Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272zbMATHCrossRefMathSciNetGoogle Scholar
  32. Sukumar N, Chopp DL, Moes N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200zbMATHCrossRefMathSciNetGoogle Scholar
  33. Van Miegroet L, Moës N, Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: Herskowitz J (ed) Proceedings of the 6th World Congress of Structural and Multidisciplinary Optimization. Rio de Janeiro, BrazilGoogle Scholar
  34. Van Miegroet L, Lemaire E, Jacobs T, Dusyinx P (2006) Stress constrained optimization using X-FEM and level set description. In: Mota Soares CA (ed)Proceeding of 3rd European Conference on Computational Mechanics. Shape and topological sensitivity analysis: theory and applications. Lisbon, PortugalGoogle Scholar
  35. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246zbMATHCrossRefMathSciNetGoogle Scholar
  36. Zhang S, Belegundu AD (1992) A systematic approach for generating velocity fields in shape optimization. Struct Multidiscipl Optim 5(1-2)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Automotive Engineering Aerospace and Mechanics DepartmentUniversity of LiègeLiègeBelgium

Personalised recommendations