Structural and Multidisciplinary Optimization

, Volume 33, Issue 1, pp 1–12

Topology optimization in crashworthiness design

Research Paper

DOI: 10.1007/s00158-006-0040-z

Cite this article as:
Forsberg, J. & Nilsson, L. Struct Multidisc Optim (2007) 33: 1. doi:10.1007/s00158-006-0040-z

Abstract

Topology optimization has developed rapidly, primarily with application on linear elastic structures subjected to static loadcases. In its basic form, an approximated optimization problem is formulated using analytical or semi-analytical methods to perform the sensitivity analysis. When an explicit finite element method is used to solve contact–impact problems, the sensitivities cannot easily be found. Hence, the engineer is forced to use numerical derivatives or other approaches. Since each finite element simulation of an impact problem may take days of computing time, the sensitivity-based methods are not a useful approach. Therefore, two alternative formulations for topology optimization are investigated in this work. The fundamental approach is to remove elements or, alternatively, change the element thicknesses based on the internal energy density distribution in the model. There is no automatic shift between the two methods within the existing algorithm. Within this formulation, it is possible to treat nonlinear effects, e.g., contact–impact and plasticity. Since no sensitivities are used, the updated design might be a step in the wrong direction for some finite elements. The load paths within the model will change if elements are removed or the element thicknesses are altered. Therefore, care should be taken with this procedure so that small steps are used, i.e., the change of the model should not be too large between two successive iterations and, therefore, the design parameters should not be altered too much. It is shown in this paper that the proposed method for topology optimization of a nonlinear problem gives similar result as a standard topology optimization procedures for the linear elastic case. Furthermore, the proposed procedures allow for topology optimization of nonlinear problems. The major restriction of the method is that responses in the optimization formulation must be coupled to the thickness updating procedure, e.g., constraint on a nodal displacement, acceleration level that is allowed.

Keywords

Topology optimization Explicit finite element analysis Contact–impacts Nonlinear problems 

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Division of Solid MechanicsUniversity of TechnologyLinköpingSweden

Personalised recommendations