Structural and Multidisciplinary Optimization

, Volume 29, Issue 6, pp 407–417

Structure topology optimization: fully coupled level set method via FEMLAB

Educational Article

Abstract

This paper presents a procedure which can easily implement the 2D compliance minimization structure topology optimization by the level set method using the FEMLAB package. Instead of a finite difference solver for the level set equation, as is usually the case, a finite element solver for the reaction–diffusion equation is used to evolve the material boundaries. All of the optimization procedures are implemented in a user-friendly manner. A FEMLAB code can be downloaded from the homepage www.imtek.de/simulation and is free for educational purposes.

Keywords

FEMLAB Finite element method Level set method Reaction–diffusion equation Structure topology optimization  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    13 Allaire G, Jouv F, Toader A (2004) Structure optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393Google Scholar
  2. 2.
    7 Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224Google Scholar
  3. 3.
    9 Bendsoe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654Google Scholar
  4. 4.
    1 Bendsoe MP, Sigmund O (2003) Topology optimization theory, methods and applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. 5.
    17 FEMLAB homepage: http://www.femlab.comGoogle Scholar
  6. 6.
    21 Hammer VB, Olhoff N (2000) Topology optimization of continuum structure subjected to pressure loading. Struct Multidisc Optim 19:85–92Google Scholar
  7. 7.
    2 http://www.altair.com/Google Scholar
  8. 8.
    3 http://www.ansys.com/Google Scholar
  9. 9.
    4 http://www.mscsoftware.com/Google Scholar
  10. 10.
    19 Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    15 Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    11 Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171:272–288Google Scholar
  13. 13.
    20 Peng D, Merriman B, Osher S, Zhao HK, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155:410–438Google Scholar
  14. 14.
    8 Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90–108Google Scholar
  15. 15.
    14 Sapiro G (2001) Geometric partial differential equations and image analysis. Cambridge University PressGoogle Scholar
  16. 16.
    10 Sethian JA, Wiegmann A (1999) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528Google Scholar
  17. 17.
    5 Sigmund O (2001) A 99-line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127Google Scholar
  18. 18.
    18 Sigmund O, Hansen AG, Haber R (2003) Topology optimization for multiphysics problem: a future FEMLAB application ? Proc. Nordic matlab conf.Google Scholar
  19. 19.
    6 Tcherniak D, Sigmund O (2001) A web-based topology optimization program. Struct Multidisc Optim 22:179–187Google Scholar
  20. 20.
    12 Wang MY, Wang X, Guo D (2003) A level set method for structure topology optimization. Comput Methods Appl Mech Eng 192:227–246Google Scholar
  21. 21.
    16 Zhao HK, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127:179–195Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute for Microsystem Technology (IMTEK)Albert Ludwigs UniversityFreiburgGermany
  2. 2.School of Civil Engineering & MechanicsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations