Advertisement

Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm

  • J. JakumeitEmail author
  • M. Herdy
  • M. Nitsche
Industrial Applications

Abstract

Different numerical optimization strategies were used to find an optimized parameter setting for the sheet metal forming process. A parameterization of a time-dependent blank-holder force was used to control the deep-drawing simulation. Besides the already well-established gradient and direct search algorithms and the response surface method the novel Kriging approach was used as an optimization strategy. Results for two analytical and two sheet metal forming test problems reveal that the new Kriging approach leads to a fast and stable convergence of the optimization process. Parallel simulation is perfectly supported by this method.

Keywords

Kriging parallel simulation process parameter optimization sheet metal forming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hillmann, M; Kubli, W. 1999: Optimization of sheet metal forming processes using simulation programs. Proceedings of Numisheet’99, eds. J.C. Gelin and P. Picart, pp. 287–292Google Scholar
  2. 2.
    Ghouati, O.; Joannic, D.; Gelin, J.C. 1998: Optimization of process parameters for the control of springback in deep drawing. In: Huetink, J.; Baaijens, F.P.T. (eds.), Simulations of Materials Processing, Methods and Applications, Rotterdam: BalkermaGoogle Scholar
  3. 3.
    Ghounati, O.; Lenoir, H.; Gelin, J.C. 1999: Optimization techniques for the drawing of sheet metal parts. Proceedings of Numisheet’99, eds. J.C. Gelin and P. Picart, pp. 293–298Google Scholar
  4. 4.
    Scott-Murphy, A.; Cardew-Hall, M.; Hodgson, P.; Kalyanasundaram, S.: Novel criteria and tools for the FE optimization of sheet metal forming process. Proceedings of Numisheet’99, eds. J.C. Gelin and P. Picart, pp. 305–310Google Scholar
  5. 5.
    Hora, P.; Tong, L.; Reissner, J. 1996: A prediction method for ductile sheet metal failure in FE-simulation. Proceedings of Numisheet’96, pp. 252–256Google Scholar
  6. 6.
    Press, W.H.; Vetterling, W.T.; Teutolsky, S.A.; Flannery, B.P. 1999: Numerical Recipes in C, 2nd edn. CAmbridge: Cambridge UniversityGoogle Scholar
  7. 7.
    Nocedal, J.; Wright, S.J. 1999: Numerical Optimization. Series in Operations Research, Berlin Heidelberg New York: SpringerGoogle Scholar
  8. 8.
    Gill, P.E.; Murray, W.; Wright, M.H. 1981: Practical Optimization. Amsterdam: AcademicGoogle Scholar
  9. 9.
    Torczon, V. 2000: Direct search methods: then and now. J Comput Appl Math124(1–2), 191–207Google Scholar
  10. 10.
    Lewis, R.M.; Torczon, V. 2000: Pattern search methods for linearly constrained minimization. SIAM J Optim10, 917–941Google Scholar
  11. 11.
    Myers, R.H.; Montgomery, D.C. 1995: Response Surface Methodology. Wiley series in probability and statistic, New York: WileyGoogle Scholar
  12. 12.
    Simpson, T.W. 1998: Comparison of response Surface and Kriging Models in the Multidisiplinary Design of an Aerospike Nozzle, ICASE Report No 98-16, NASA/CR-1998-206935Google Scholar
  13. 13.
    Watraon, G.S. 1984: Smoothing and Interpolation by Kriging and with Splines. Math Geol16, 601–615Google Scholar
  14. 14.
    Welch, W.J.; Sacks, J. 1991: A system for quality improvement via computer experiments. Commun Stat Theory Methods20, 477–495Google Scholar
  15. 15.
    Tang, B. 1993: Orthonogal Array-Based Latin Hypercubes. J Am Stat Assoc88, 1392–1397Google Scholar
  16. 16.
    Bäck, T. 1996: Evolutionary Algorithms in Theory and Practice. Oxford: Oxford UniversityGoogle Scholar
  17. 17.
    Benchmark Problems: B3. 2-D Draw Bending. In: Proceedings of Numisheet’93. Tokyo, pp. 398–401Google Scholar
  18. 18.
    Benchmark Problems and results: B-2. S-Rail Benchmark Problem (SB-2 and EB-2). In: Proceedings of Numisheetq’96. Michigan, pp. 444–454 and 481–482Google Scholar
  19. 19.
    INDEED – The Simulation Program for Forming TechnologyGoogle Scholar
  20. 20.
    INDEED – Reference; 7.3.2Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Fraunhofer Institute Algorithms and Scientific ComputingSankt AugustinGermany
  2. 2.INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbHBerlinGermany

Personalised recommendations