Structural and Multidisciplinary Optimization

, Volume 28, Issue 6, pp 416–426 | Cite as

A probabilistic design system for reliability-based design optimization

Research Paper


A probabilistic design system for reliability-based design optimization problems called ADAPRES_NET is presented in this paper. ADAPRES_NET includes two main features, one of which is the use of an adaptive response surface method by which the probabilistic constraints are replaced with response functions, the other a distributed computing environment by which the computational applications are distributed on a network. The proposed system is presented with an example in which the well-known mechanical part, the connecting rod, is selected. Finally, the evaluation of the probabilistic constraints is also compared with that of the classical reliability methods, and the results indicate the benefit of using ADAPRES_NET.


distributed computing RBDO response surface method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AEMDesign 2000: Scholar
  2. 2.
    ANSYS 2000: ANSYS Online Manual for Release 5.5. Scholar
  3. 3.
    Barthelemy, J.F.M.; Haftka, R.T. 1993: Approximation concepts for optimum structural design – A review. Struct Optim5(3), 129–144Google Scholar
  4. 4.
    Belegundu, A.D. 1988: Probabilistic optimal design using second moment criteria. J Mech Transm Automat Des ASME110, 324–329Google Scholar
  5. 5.
    Boresi, A.P.; Schmidt, R.J.; Sidebottom, O.M. 1993: Advanced mechanics of materials. New York: WileyGoogle Scholar
  6. 6.
    Box, G.E.P.; Wilson, K.B. 1951: On the experimental attainment of optimum conditions. J Roy Stat Soc , Series B, 1–45Google Scholar
  7. 7.
    Breitung, K. 1983: Asymptotic approximations for multinormal integrals. J Eng Mech110(3), 357–366Google Scholar
  8. 8.
    Bucher, C.G. 1990: A fast and efficient response surface approach for structural reliability problems. Struct Safety7(1), 57–66Google Scholar
  9. 9.
    COMREL 2000: http://www.strurel.deGoogle Scholar
  10. 10.
    Enevoldsen, I.; Sorensen, J.D. 1994: Reliability-based optimization in structural engineering. Struct Safety15, 169–196Google Scholar
  11. 11.
    Giunta, A.A. 1997: Aircraft multidisciplinary optimization using design of experiments theory and response surface modeling methods. Ph.D. thesis, Virginia Polytechnic Institute & State University, Blacksburg, VirginiaGoogle Scholar
  12. 12.
    Hasofer, M.; Lind, N.C. 1974: Exact and invariant second-moment code format. J Eng Mech Divisions ASCE 100(EM1), 111–121Google Scholar
  13. 13.
    Huang, X.; Dudley, J.; Haftka, R.T.; Grossman, B.; Mason, W.H. 1996: Structural weight estimation for multidisciplinary optimization of a high-speed civil transport. J Aircr33(3), 608–616Google Scholar
  14. 14.
    Kim, S.; Na, S. 1997: Response surface method using vector projected sampling points. Struct Safety19(1), 3–19Google Scholar
  15. 15.
    Kleinbaum, D.G.; Kuper, L.L.; Muller, K.E. 1987: Applied regression analysis and other multivariable methods. Boston: PWS-KENTGoogle Scholar
  16. 16.
    Kreyszig, E. 1993: Advanced engineering mathematics, 7th edn. Singapore: WileyGoogle Scholar
  17. 17.
    Liu, B.; Haftka, R.T.; Akgün, M. 2000: Two-level composite wing structural optimization using response surfaces. Struct Multidisc Optim20, 87–96Google Scholar
  18. 18.
    Lang, O.R. 1979: Running Gear for High-speed Internal-Combustion Engines. Design Handbooks 22Google Scholar
  19. 19.
    Meng, X.; McMahon, C.A. 1998: Use of influence surfaces in a network approach to probabilistic analysis. Comput Model Simul Eng3(1), 12–19Google Scholar
  20. 20.
    Myers, R.H.; Montgomery, D.C. 1995: Response surfacemethodology: process and product optimization using designed experiments. New York: WileyGoogle Scholar
  21. 21.
    Nikoladis, E.; Burdisso, R. 1988: Reliability based optimization: a safety index approach. Comput Struct28(6), 781–788Google Scholar
  22. 22.
    Peterson, J.L. 1981: Petri net theory and the modeling of systems. New Jersey: Prentice HallGoogle Scholar
  23. 23.
    Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. 1992: Numerical recipes in C. Second Edition. London: Cambridge PressGoogle Scholar
  24. 24.
    Rabb, R. 1996: Fatigue Failure of a Connecting Rod. Eng Fail Anal2(1), 13–28Google Scholar
  25. 25.
    Rajashekhar, M.R.; Ellingwood, B.R. 1993: A new look at the response surface approach for reliability analysis. Struct Safety12, 205–220Google Scholar
  26. 26.
    Reddy, M.V.; Grandhi, R.V.; Hopkins, D.A. 1994: Reliability based structural optimization: a simplified safety index approach. Comput Struct 53(6), 1407–418Google Scholar
  27. 27.
    Rosenblatt, M. 1969: Remarks on multivariate transformation. Ann Math Stat23(3), 470–472Google Scholar
  28. 28.
    Ryan, T. 1997: Modern regression methods. New York: WileyGoogle Scholar
  29. 29.
    Schmit, L.A.; Farshi, B. 1974: Some approximation concepts for structural synthesis. AIAA J, 12(5), 692–699Google Scholar
  30. 30.
    Stevens, W.R. 1990: UNIX network programming. New Jersey: Prentice-HallGoogle Scholar
  31. 31.
    Tsai, C.; Chang, K.; Wang, J. 1995: Integration infrastructure for a simulation-based design environment. The 15th Annual international computers in engineering, ASME, September 17–20, Boston, MassachusettsGoogle Scholar
  32. 32.
    Yi, C.; Mingwu, W.; Ling, T. 1999: Fatigue strength reliability analysis of diesel connecting rod based on stochastic finite element method. J Eng Gas Turbines Power 121(4), 741–745Google Scholar
  33. 33.
    Wang, L.P.; Grandhi, R.V. 1994: Efficient safety index calculation for structural reliability analysis. AIAA J32(10), 2090–2098Google Scholar
  34. 34.
    Wang, L.P.; Grandhi, R.V.; Hopkins, D.A. 1995: Structural reliability optimization using an efficient safety index calculation procedure. Int J Numer Methods Eng38(10), 1721–1738Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Dept. of Mechanical Eng.Ataturk UniversityErzurumTurkey
  2. 2.Dept. of Mechanical Eng.University of BathBathUK

Personalised recommendations