Structural and Multidisciplinary Optimization

, Volume 28, Issue 6, pp 375–387 | Cite as

Structural optimization complexity: what has Moore’s law done for us?

Forum

Abstract

Rapid increases in computer processing power, memory and storage space have not eliminated computational cost and time constraints on the use of structural optimization for design. This is due to the constant increase in the required fidelity (and hence complexity) of analysis models. Anecdotal evidence seems to indicate that analysis models of acceptable accuracy have required at least six to eight hours of computer time (an overnight run) throughout the last thirty years. This poses a severe challenge for global optimization or reliability-based design. In this paper, we review how increases in computer power were utilized in structural optimization. We resolve problem complexity into components relating to complexity of analysis model, analysis procedure and optimization methodology. We explore the structural optimization problems that we can solve at present and conclude that we can solve problems with the highest possible complexity in only two of the three components of model, analysis procedure or optimization. We use examples of optimum design of composite structures to guide the discussion due to our familiarity with such problems. However, these are supplemented with other structural optimization examples to illustrate the universality of the message.

Keywords

complexity Moore’s law optimization  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adali, S.; Richter, A.; Verijenko, V.E. 1995: Multiobjective Design of laminated Cylindrical Shells for Maximum Pressure and Buckling Load. Microcomputers in Civil Engineering10, 269–279Google Scholar
  2. 2.
    Antonio, C.A.C. 1999: Optimisation of geometrically non-linear composite structures based on load-displacement control. Composite Struct46, 345–356Google Scholar
  3. 3.
    Ashley, H. 1982: TOn making things the best – Aeronautical Uses of Optimization. J Aircr19(1), 5–28Google Scholar
  4. 4.
    Backlund, J.; Ishby, R. 1998: Shape Optimization of holes in composite shear panels. In: Rozvany, G.I.N.; Karihaloo, B.L. (eds.), Structural Optimization. Kluwer Publishers, 9–16Google Scholar
  5. 5.
    Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. 1996: Meshless methods: An overview and recent developments. Comput Methods Appl Mech Eng139, 3–47Google Scholar
  6. 6.
    Bennett, J.A.; Botkin, M.E. 1985: Structural Shape Optimization with Geometric Description and Adaptive Mesh Refinement. AIAA J23(3), 458–464Google Scholar
  7. 7.
    Bennet, J.A.; Botkin, M.E. 1986: The Optimum Shape: Automated Structural Design. General Motors Research Laboratories Symposia Series, New York: Plenum PressGoogle Scholar
  8. 8.
    Bondophadhyay, P.K. 1998: Moore’s Law governs the silicon revolution. IEEE86(1), 78–81Google Scholar
  9. 9.
    Botkin, M.E.; Yang, R.J.; Bennett, J.A. 1986: Shape Optimization of Three Dimensional Stamped and Solid Automotive Components. New York: Plenum PressGoogle Scholar
  10. 10.
    Bushnell, D. 1987: PANDA2 – program for minimum weight design of stiffened, composite, locally buckled panels. Comput Struct25(4), 469–605Google Scholar
  11. 11.
    Butler, R.; Williams, F.W. 1992: Optimum Design Using Viconopt, A buckling and strength constraint program for prismatic assemblies of anisotropic plates. Comput Struct43(4), 699–708Google Scholar
  12. 12.
    Callahan, K.J.; Weeks, G.E. 1992: Optimum design of composite laminates using genetic algorithms. Comput Struct2(3), 149–160Google Scholar
  13. 13.
    Chamis, C.C.; Murthy, P.L.N.; Gotsis, P.K.; Mital, S.K. 2000: Telescoping composite mechanics for composite behavior simulation. Comput Methods Appl Mech Eng185(2–4), 399–411Google Scholar
  14. 14.
    Craig, K.J.; Stander, N.; Doodge, D.A.; Varadappa, S. 2002: Multidisciplinary Design Optimization of Automotive Crashworthiness and NVH Using Response Surface Methods. AIAA Paper No. 2002-5607, Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 4–6 September 2002, Atlanta, GeorgiaGoogle Scholar
  15. 15.
    Crossley, W.A.; Laananen, D.H. 1996: Genetic Algorithm Based Optimal Design of Stiffened panels for Energy Absorption. Proceedings of the American Helicopter Society 52nd Annual Forum. Washington, D.C., June 4–6, pp. 1367–1376Google Scholar
  16. 16.
    Falzon, B.G.; Steven, G.P.; Xie, Y.M. 1996: Shape optimization of interior cutouts in composite panels. Struct Optim11, 43–49Google Scholar
  17. 17.
    Fu, W.; Biggers, S.B.; Latour, R.A. 1998: Design optimization of a laminated composite femoral component for hip joint. Thermoplastic Composite Mater11(2), 99–112Google Scholar
  18. 18.
    Furuya, H.; Haftka, R.T. 1995: Placing Actuators on Space Structures by Genetic Algorithms and Effectiveness Indices. Struct Optim9, 69–75Google Scholar
  19. 19.
    Graesser, D.L.; Zabinsky, Z.B.; Tuttle, M.; Kim, G.I. 1993: Optimal design of a composite structure, Composite Struct24, 273–281Google Scholar
  20. 20.
    Grandhi, R. 1993: Structural Optimization with Frequency Constraints – A Review. AIAA J31(12), 2296–2303Google Scholar
  21. 21.
    Groenwold, A.A.; Snyman, J.A.; Stander, N. 1996: Modified Trajectory Method for Practical Global Optimization Problems. AIAA J34(10), 2126–2131Google Scholar
  22. 22.
    Grosset, L.; Venkataraman, S.; Haftka, R.T.; Rastogi, N. 2001: Genetic optimization of two-material composite laminates. Proceeding of the American Society for Composites 16th Technical Conference, September 9–12, Blacksburg, Virginia, USAGoogle Scholar
  23. 23.
    Grindeanu, I.; Kim, N.H.; Choi, K.K.; Chen, J.S., to appear, 2002: CAD-based shape optimization using a meshfree method. Concurrent Eng: Res Appl, 10(1), 55–66Google Scholar
  24. 24.
    Gurdal, Z.; Haftka, R.T. 1988: Automated Design of Composite Plates for Improved Damage Tolerance, Composite Materials: testing and Design (Eighth Conference). ASTM STP 972, Whitcomb, J.D. (ed.), American Society for Testing and Materials, Philadelphia, pp. 5–22Google Scholar
  25. 25.
    Gurdal, Z.; Haftka, R.T.; Hajela, P. 1998: Design and Optimization of Laminated Composite Structures. New York: WileyGoogle Scholar
  26. 26.
    Ha, S.K.; Jeong, J.Y. 1996: Design Optimization of Hip Prosthesis of Thick Laminated Composites by Developing Finite Element Method and Sensitivity Analysis. KSME J10(1), 1–11Google Scholar
  27. 27.
    Haftka, R.T.; Starnes, J.H. 1976: Applications of a quadratic extended interior penalty function for structural optimization. AIAA J14(6), 718–724Google Scholar
  28. 28.
    Haftka, R.T.; Starnes, J.H. Jr. 1988: Stiffness tailoring for Improved Compressive Strength of composite plates with Holes. AIAA J26(1), 72–77Google Scholar
  29. 29.
    Hajela, P.; Shih, C.-J. 1989: Optimal Design of Laminated Composites Using a Modified Mixed Integer and Discrete Programming Algorithm. Comput Struct32(1), 213–221Google Scholar
  30. 30.
    Hammer, V.B. 2000: Optimization of fibrous laminates undergoing progressive damage. Numer Methods Eng48, 1265–1284Google Scholar
  31. 31.
    Hyer, M.W.; Charette, R.F. 1991: Use of curvilinear fiber format in composite structural design. AIAA J29, 1011–1015Google Scholar
  32. 32.
    Hu, H.T.; Wang, S.S. 1992: Optimization for buckling resistance of fiber composite laminate shells with and without cutouts. Composite Struct22, 3–13Google Scholar
  33. 33.
    Jaunky, N.; Knight, N.F. Jr.; Ambur, D.R. 1998: Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints. Composite Struct41, 243–252Google Scholar
  34. 34.
    Jegley, D.C.; Bush, H.G.; Lovejoy, A.E. 1999: Structural Response and Failure of a Full Scale Stiched Graphite Epoxy Wing. AIAA Paper No. 2001-1334 Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April 16–19, 2001, Seatlle, WashingtonGoogle Scholar
  35. 35.
    Kassapogolou, C. 1997: Simultaneous cost and weight minimization of composite-stiffened panels under compress and shear. Composites – Part A28A, 419–435Google Scholar
  36. 36.
    Kassapogolou, C.; Dobyns, A.L. 2001: Simultaneous cost and weight minimization of postbuckled composite panels under combined compression and shear. Struct Multidisc Optim21, 372–382Google Scholar
  37. 37.
    Katz, Y.; Haftka, R.T.; Altus, E. 1989: Optimization of fiber directions for increasing the failure load of a plate with a hole. Proceedings of the ASC 4th Technical Conference on Composite Materials, October 3–5, Blacksburg, Virginia, pp. 62–71Google Scholar
  38. 38.
    Khot, N.S.; Venkaya, V.B.; Berke, L. 1999: Optimum Design of Composite Structures with Stress and Displacement Constraints. AIAA14(2), 131–132Google Scholar
  39. 39.
    Kim, N.H.; Choi, K.K.; Botkin, M.E. 2003: Numerical method for shape optimization using meshfree method. Struct Multidisc Optim2(6), 418–429Google Scholar
  40. 40.
    Kim, N.H.; Choi, K.K.; Chen, J.S. 2001: Die Shape Optimization of Sheet Metal Stamping Process Using Meshfree Method. Numer Methods Eng51, 1385–1405Google Scholar
  41. 41.
    Kim, S.J.; Goo, N.S. 1999: Optimal design of laminated composite plates in a fuzzy environment. AIAA J31(3), 578–583Google Scholar
  42. 42.
    Kogiso, N.; Shao, S.; Murotsu, Y. 1997: TReliability-based optimum design of symmetric laminated plate subject to buckling. Struct Optim14, 184–192Google Scholar
  43. 43.
    Lamberti, L.; Venkataraman, S.; Haftka, R.T.; Johnson, T.F. 2000: Comparison of Preliminary Designs of Stiffened Panels Optimized Using PANDA2 for Reusable Launch Vehicle Propellant Tanks. AIAA Paper No. 2000-1657, Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Atlanta, Georgia, USAGoogle Scholar
  44. 44.
    Lamberti, L.; Venkataraman, S.; Haftka, R.T.; Johnson, T.F. 2002: Preliminary Design optimization of Stiffened Panels Using Approximate Analysis Models. Int J Numer Methods Eng57, 2003, 1351–1380Google Scholar
  45. 45.
    Lecina, A.; Petiau, C. 1987: Advances in optimal design with composite materials. Computer Aided Optimal Design: Structural and Mechanical Systems,NATO ASI Series, Vol F27, edited by Mota Soares, C.A., Berlin Heidelberg New York: Springer, pp. 943–953Google Scholar
  46. 46.
    Lee, S.J.; Hinton, S.J. 2000: Dangers inherited in shells optimized with linear assumptions. Comput Struct78, 473–486Google Scholar
  47. 47.
    LeRiche, R.; Haftka, R.T. 1995: Improved genetic Algorithm for Minimum Thickness Composite Laminate Design. Composites Eng5(2), 143–161Google Scholar
  48. 48.
    LeRiche, R.; Gaudin, J. 1998: Design of dimensionally stable composites by evolutionary optimization. Composite Struct41, 97–111Google Scholar
  49. 49.
    Levy, R.; Lev, O.E. 1987: Recent Developments in Structural Optimization. Struct Eng113(9), 1939–1962Google Scholar
  50. 50.
    Ley, R.; Peltier, A. 2001: Optimal sizing of a composite sandwich fuselage component. Vehicle Des25(1–2), 89–114Google Scholar
  51. 51.
    Lombardi, M.; Haftka, R.T. 1998: Anti-optimization technique for structural design under load uncertainties. Comput Methods Appl Mech Eng157(1–2) , 19–31Google Scholar
  52. 52.
    Mabson, G.E.; Flynn, B.W.; Ilcewiz, L.B.; Graesser, D.L. 1994: The Use of COSTADE in developing commercial aircraft fuselage structures. AIAA-94-1492, Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and materials Conference, April 18–20, Hilton Head, South Carolina, 1384–1393Google Scholar
  53. 53.
    Mesquita, L.; Kamat, M.P. 1987: Optimization of Stiffened laminated Composite Plates with Frequency Constraints. Eng Optim11, 77–88Google Scholar
  54. 54.
    Miki, M.; Sugiyama, Y. 1993: Optimum Design of Laminated Composite Plates using Lamination Parameters. AIAA J31(5), 921–922Google Scholar
  55. 55.
    Miki, M.; Murotsu, Y.; Murayama, N.; Tanaka, T. 1993: Application of Lamination Parameters to Reliability-Based Stiffness Design of Composites. AIAA31(10), 1938–1945Google Scholar
  56. 56.
    Moita, J.S.; Barbosa, J.I.; Mota Soares, C.M.; Mota Soares, C.A. 2000: Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput Struct76, 407–420Google Scholar
  57. 57.
    Moore, G.E. 1999: Cramming more components onto integrated circuits. Electronics38(8), 114–117Google Scholar
  58. 58.
    Nagendra, S.; Jestin, D.; Gurdal, Z.; Haftka, R.T.; Wat-son, L.T. 1996: Improved Genetic Algorithm for the Design of Stiffened Composite Panels. Comput Struct58(3), 543–555Google Scholar
  59. 59.
    Niordson, F.I. 2001: Early numerical computations in engineering. Appl Mech Rev54(6), R17–R19Google Scholar
  60. 60.
    Olhoff, N. 1996: On Optimum Design of Structures and Materials. Meccanica31, 143–161Google Scholar
  61. 61.
    Parkinson, C.N. 1959: Parkinson’s Law or the pursuit of progress. London: John MurrayGoogle Scholar
  62. 62.
    Perry, C.A.; Gurdal, Z.; Starnes, J.H. 1997: Minimum Weight Design of Compressively Loaded Stiffened Panels for Post buckling Response. Eng Optim28, 175–197Google Scholar
  63. 63.
    Qu, X.; Venkataraman, S.; Haftka, R.T.; Johnson, T.F. 2003: Deterministic and reliability based optimization of composite laminates for cryogenic environments. AIAA J41(10), 2029–2036Google Scholar
  64. 64.
    Renton, W.J. 2001: Aerospace and structures, where are we headed? Int J Solids Struct38, 3309–3319Google Scholar
  65. 65.
    Saravanos, D.A.; Chamis, C.C. 1992: Multiobjective shape and material optimization of composite structures including damping. AIAA J30(3), 805–813Google Scholar
  66. 66.
    Sargent, P.M.; Ige, D.O.; Ball, N.R. 1995: Design of Laminate Composite Layups using Genetic Algorithms. Eng Comput11, 59–69Google Scholar
  67. 67.
    Schaller, R.J. 1997: Moore’s Law: past, present and future. IEEE Spectrum, June 1997, 53–59Google Scholar
  68. 68.
    Schmit, L.A.; Farshi, B. 1977: Optimum design of laminated fibre composite plates. Int J Numer Methods Eng11, 623–640Google Scholar
  69. 69.
    Schmit, L.A.; Miura, H. 1976: A New Structural Analysis/Synthesis Capability – ACCESS 1. AIAA J14(5), 661–671Google Scholar
  70. 70.
    Shin, D.K.; Gurdal, Z.; Griffin, O.H. Jr. 1991: Minimum weight design of laminated composite plates for post buckling performance. Appl Mech Rev44(11), part 2, 219–231Google Scholar
  71. 71.
    Sobieszczanski-Sobieski, J. 1986: Structural optimization: challenges and opportunities. Vehicle Des7(3–4), 242–263Google Scholar
  72. 72.
    Sobieszczanski-Sobieski, J.; Haftka, R.T. 1997: Multidisciplinary aerospace design optimization: Survey of recent developments. Struct Optim14, 1–23Google Scholar
  73. 73.
    Sobieszczanski-Sobieski, J.; Kodiyalam, S.; Yang, R.J. 2001: Optimization of car body under constraints of noise, vibration and harshness (NVH) and crash. Struct Multidisc Optim22, 295–306Google Scholar
  74. 74.
    Starnes, J.H. Jr.; Haftka, R.T. 1979: Preliminary Design of Composite Wings for Buckling, Strength, and Displacement Constraints. J Aircr16(8), 564–570Google Scholar
  75. 75.
    Stroud, J.W.; Agranoff, N. 1976: Minimum Mass design of Filamentary Composite Panels Under Combined Loads: Design Procedure Based on Simplified Equations, NASA-TN-D-8257, Washington, D.C.Google Scholar
  76. 76.
    Stroud, J.W.; Agranoff, N. 1977: Minimum Mass design of Filamentary Composite Panels Under Combined Loads: Design Procedure Based on a Rigorous Buckling Analysis, NASA-TN-D-8257, Washington, D.C.Google Scholar
  77. 77.
    Stroud, W.J.; Anderson, M.S. 1981: PASCO: Structural Panel Analysis and Sizing Code, Capability and Analytical Foundations, NASA-TM-80181, Washington, D.C.Google Scholar
  78. 78.
    Thimbleby, H. 1993: Computerized Parkinson’s Law. Comput Control Eng4(5), 197–198Google Scholar
  79. 79.
    van Bloemen Waanders, B.; Eldered, M.; Guinta, A.; Reese, G.; Bhardwaj, M.; Fulcher, C. 2001: AIAA-2001-1625, Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April 16–19, 2001, Seattle, WashingtonGoogle Scholar
  80. 80.
    Vanderplaats, G.N. 1982: Structural Optimization – Past, Present and Future. AIAA J20(7), 992–1000Google Scholar
  81. 81.
    Vanderplaats, G.N. 1993: Thirty years of modern structural optimization. Adv Eng Softw16, 81–88Google Scholar
  82. 82.
    Vanderplaats, G.N. 2002: Very Large Scale Optimization. NASA/CR-2002-211768, Washington, D.C.Google Scholar
  83. 83.
    Venkaya, V.B. 1978: Structural Optimization – Review and Some Recommendations. Numer Methods Eng13(2), 203–228Google Scholar
  84. 84.
    Venter, G.; Haftka, R.T. 2000: Two-Species Genetic Algorithm for Design under Worst Case Conditions. Evol Optim (Internet J)2(1), 1–19Google Scholar
  85. 85.
    Walsh, J.L.; Weston, R.P.; Samareh, J.A.; Mason, B.H.; Green, L.L.; Bierdon, R.T. 2000: Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles, Part 2: Preliminary Results. AIAA-2000-0419, Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, 10–13 January 2000, Reno, Nevada, USAGoogle Scholar
  86. 86.
    Walsh, J.L.; Weston, R.P.; Samareh, J.A.; Mason, B.H.; Green, L.L.; Bierdon, R.T. 1999: Cryogenic tank structure sizing with structural optimization method. AIAA-2001-1599, Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Seattle Washington, 2001Google Scholar
  87. 87.
    Wellen, H.; Bartholomew, P. 1987: Structural Optimization in Aircraft Construction, Computer Aided Optimal Design: Structural and Mechanical Systems NATO ASI Series, Vol. F27, edited by Mota Soares, C.A., Berlin Heidelberg New York: Springer, pp. 955–970Google Scholar
  88. 88.
    Yu, M.; Pochtman, L.; Derevyanko, L.V.; Mormul, N.F. 1990: Multicriterial Optimization of Hybrid Composite Cylindrical Shells Under a Stochastic Combined laoding. Mech Composite Mater26(6), 801–806Google Scholar
  89. 89.
    Yang, L.; Ma, Z.K. 1965: Optimum Design Based on Reliability for a Composite Structural System. Comput Struct36(5), 785–790Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.San Diego State UniversityDepartment of Aerospace Engineering and Engineering MechanicsSan DiegoUSA
  2. 2.University of FloridaDepartment of Mechanical and Aerospace EngineeringGainesvilleUSA

Personalised recommendations