Advertisement

Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique

  • M. Redhe
  • L. Nilsson
Industrial applications

Abstract

The aim of this work is to illustrate how a space mapping technique using surrogate models together with response surfaces can be used for structural optimization of crashworthiness problems. To determine the response surfaces, several functional evaluations must be performed and each evaluation can be computationally demanding. The space mapping technique uses surrogate models, i.e. less costly models, to determine these surfaces and their associated gradients. The full model is used to correct the gradients from the surrogate model for the next iteration. Thus, the space mapping technique makes it possible to reduce the total computing time needed to find the optimal solution. First, two analytical functions and one analytical structural optimization problem are presented to exemplify the idea of space mapping and to compare the efficiency of space mapping to traditional response surface optimization. Secondly, a sub-model of a complete vehicle finite element (FE) model is used to study different objective functions in vehicle crashworthiness optimization. Finally, the space mapping technique is applied to a structural optimization problem of a large industrial FE vehicle model, consisting of 350.000 shell elements and a computing time of 100 h. In this problem the intrusion in the passenger compartment area was reduced by 32% without compromising other crashworthiness parameters.

Keywords

crashworthiness finite element optimization response surface space mapping  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakr, M.H.; Bandler, J.W.; Biernacki, R.M.; Chen, S.H.; Madsen, K. 1998: A Trust Region Aggressive Space Mapping Algorithm for EM Optimization. IEEE Trans Microw Theory Tech46, 2412–2425 Google Scholar
  2. 2.
    Bakr, M.H.; Bandler, J.W.; Madsen, K.; Rayas-Sánchez, J.E.; Sondergaard, J. 2000: Space Mapping Optimization of Microwave Circuits Exploiting Surrogate Models. IEEE Trans Microw Theory Tech48Google Scholar
  3. 3.
    Bakr, M.H.; Bandler, J.W.; Madsen, K.; Sondergaard, J. 2002: An introduction to the Space Mapping Technique. Optim Eng2, 369–384 Google Scholar
  4. 4.
    Bandler, J.W.; Biernacki, R.M.; Chen, S.H.; Grobelny, R.H.; Hemmers, R.H. 1994: Space Mapping Technique for Elecromagnetic Optimization. IEEE Trans Microw Theory Tech42, 2536–2544 Google Scholar
  5. 5.
    Bandler, J.W.; Biernacki, R.M.; Chen, S.H.; Hemmers, R.H.; Madsen, K. 1995: Electromagnetic Optimization Exploition Aggrasive Space Mapping. IEEE Trans Microw Theory Tech43, 2874–2882 Google Scholar
  6. 6.
    Craig, K.J.; Stander, N.; Dooge, D.A.; Varadappa, S. 2002: Multidiciplinary design optimization of automotive crashwothiness and nvh using response surface methods. AIAA-2002-5507, Mistree, F. (ed.), 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optim., Atlanta, GA, USA Google Scholar
  7. 7.
    Etman, L.F.P.; Adriaens J.M.T.A.; van Slagmaat, M.T.P.; Schoofs, A.J.G. 1997: Crashworthiness design using Multipoint sequential linerar programming. Struct. Optim.12, 222–8 Google Scholar
  8. 8.
    Etman, L.F.P. 1997: Optimization of multibody system using approximation concepts. Ph.D. thesis, Technical University Eindhoven, The Netherlands Google Scholar
  9. 9.
    Forsberg, J. 2002: Simulation based crashwothiness design – Accuracy aspects of structural optimization using response surfaces. LIU-TEK-LIC-2002:27, Linköpings university, Linköping Google Scholar
  10. 10.
    Hallquist, J.O. 1998: LS-DYNA Theoretical Manual. Livermore Software Technology Corp., Livermore Google Scholar
  11. 11.
    Ignatovich, C.L.; Diaz, A.R. 2002: Physical surrogates in design optimization for enhanced crashworthiness, AIAA-2002-5537, Mistree, F. (ed.), 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optim. Atlanta, GA, USA Google Scholar
  12. 12.
    Leary, S.; Bhasker, A.; Keane, A. 2000: A Constraint Mapping Approach to the Structural Optimization of an Expensive Model using Surrogates. Conference on Surrogate Modelling and Space Mapping for Eng. Optim., Madsen, K. (ed.), Lyngby Google Scholar
  13. 13.
    Madsen, K.; Sondergaard, J. 2000: Space Mapping From a Mathematical Viewpoint. Conference on Surrogate Modelling and Space Mapping for Eng. Optim., Madsen, K. (ed), Lyngby Google Scholar
  14. 14.
    Marklund, P.-O. 1999: Optimization of a Car Body Component Subjected to Impact. LIU-TEK-LIC-1999:34, Linköpings university, Linköping Google Scholar
  15. 15.
    Marklund, P.-O.; Nilsson, L. 2001: Optimization of a Car Body Component Subjected to Impact. Struct Multidisc Optim21, 383–392 Google Scholar
  16. 16.
    Myers, R.H.; Montgomery, D.C. 1995: Response Surface Methodology. New York: Wiley Google Scholar
  17. 17.
    Redhe, M. 2001: Simulation Based Design – Structural optimization at early design stages. LIU-TEK-LIC-2001:51, Linköpings university, Linköping Google Scholar
  18. 18.
    Redhe, M.; Nilsson, L. 2002a: A Method to Determine Structural Sensitivities in Vehicle Crashworthiness Design. Int J Crashworthiness7(2), 179–190 Google Scholar
  19. 19.
    Redhe, M.; Forsberg, J.; Jansson, T.; Marklund, P.O.; Nilsson, L. 2002: Using the Response Surface Methodology and the D-Optimality Criterion in Crashworthiness Related Problems – an analysis of the surface approximation error versus the number of function evaluations. Struct Multidisc Optim24(3), 185–194 Google Scholar
  20. 20.
    Redhe, M.; Nilsson, L. 2002c: Using Space Mapping and Surrogate Models to Optimize Vehicle Crashworthiness Design, AIAA-2002-5536, Mistree, F. (ed.), 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optim., Atlanta, GA, USA Google Scholar
  21. 21.
    Roux, W.J.; Stander, N.; Haftka, R.T. 1998: Response Surface Approximations for Structural Optimization. Int J Numer Methods Eng42, 517–534 Google Scholar
  22. 22.
    Schramm, U.; Thomas, H. 1998: Structural optimization in occupant safety and crash analysis. Des Optim1(4), 374–387 Google Scholar
  23. 23.
    Schramm, U.; Thomas, H. 1999: Crashworthiness design using structural optimization. AIAA Pap, 98–4729 Google Scholar
  24. 24.
    Schramm, U. 2001: Multi-disciplinary Optimization for NVH and crashworthiness. The First MIT Conference on Computational Fluid and Solid Mechanics (Boston, June 12–15), Bathe, K.J. (ed.), Oxford, Elsevier Science Google Scholar
  25. 25.
    Schramm, U. 2002: Designing with structural optimization – A practical point of view, AIAA Paper 2002-5191. Mistree, F. (ed.), 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optim., Atlanta, GA, USA Google Scholar
  26. 26.
    Sobieszczanski-Sobieski, J.; Kodiyalam, S.; Yang, R.-J. 2000: Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash. AIAA Pap, 2000–1521 Google Scholar
  27. 27.
    Stander, N.; Craig K.J.; Roux, W. 2002a: LS-OPT User’s Manual v. 2. Livermore Software Technology Corporation, Livermore Google Scholar
  28. 28.
    Yamazaki, K.; Han, J. 1998: Maximization of the Crushing Energy Absorption of Tubes. Struct Optim16, 37–46 Google Scholar
  29. 29.
    Yang, R.-J.; Gu, L.; Tho, C.H.; Sobieszczanski-Sobieski, J. 2001: Multidisciplinary design optimization of a full vehicle with high performance computing. AIAA Pap, 2001–1273 Google Scholar
  30. 30.
    Yang, R.-J.; Tho, C.H.; Gu, L. 2002: Recent development in Multidisciplinary design optimization of vehicle structures, AIAA-2002-5606. Mistree, F. (ed.), 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optim., Atlanta, GA, USAGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Engineering Research Nordic ABLinköpingSweden
  2. 2.Division of Solid Mechanics, Department of Mechanical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations