Structural and Multidisciplinary Optimization

, Volume 26, Issue 6, pp 369–395

Survey of multi-objective optimization methods for engineering

Review article

Abstract

A survey of current continuous nonlinear multi-objective optimization (MOO) concepts and methods is presented. It consolidates and relates seemingly different terminology and methods. The methods are divided into three major categories: methods with a priori articulation of preferences, methods with a posteriori articulation of preferences, and methods with no articulation of preferences. Genetic algorithms are surveyed as well. Commentary is provided on three fronts, concerning the advantages and pitfalls of individual methods, the different classes of methods, and the field of MOO as a whole. The Characteristics of the most significant methods are summarized. Conclusions are drawn that reflect often-neglected ideas and applicability to engineering problems. It is found that no single approach is superior. Rather, the selection of a specific method depends on the type of information that is provided in the problem, the user’s preferences, the solution requirements, and the availability of software.

Keywords

optimization multi-objective multi-criteria engineering  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, J.S.; Elwakeil, O.A.; Chahande, A.I.; Hsieh, C.C. 1995: Global optimization methods for engineering applications: a review. Struct. Optim. 9, 137–159 Google Scholar
  2. 2.
    Athan, T.W.; Papalambros, P.Y. 1996: A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng. Optim. 27, 155–176 Google Scholar
  3. 3.
    Baier, H. 1977: Über Algorithmen zur Ermittlung und Charakterisierung Pareto-optimaler Lösungen bei Entwurfsaufgaben Elastischer Tragwerke. Z. Angew. Math. Mech. 57, 318–320 Google Scholar
  4. 4.
    Belegundu, A.D.; Murthy, D.V.; Salagame, R.R.; Contans, E.W. 1994: Multi-objective optimization of laminated ceramic composites using genetic algorithms. In: 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in Panama City Beach), pp. 1055–1022. Washington, DC: American Institute of Aeronautics and Astronautics Google Scholar
  5. 5.
    Bendsoe, M.P.; Olhoff, N.; Taylor, J.E. 1984: A variational formulation for multicriteria structural optimization. J. Struct. Mech. 11, 523–544 Google Scholar
  6. 6.
    Benson, H.P. 1978: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26, 569–580 Google Scholar
  7. 7.
    Ben-Tal, A.; Teboulle, M. 1989: A smooth technique for nondifferentiable optimization problems. In: Dolecki, S. (ed.) Optimization, Proceedings of the Fifth French-German Conference (held in Castel-Novel 1988), Lecture Notes in Mathematics, No. 1405, pp. 1–11. Berlin: Springer-Verlag Google Scholar
  8. 8.
    Boychuk, L.M.; Ovchinnikov, V.O. 1973: Principal methods for solution of multicriteria optimization problems (survey). Sov. Autom. Control 6, 1–4 Google Scholar
  9. 9.
    Bridgman, P.W. 1922: Dimensional Analysis. New Haven: Yale University Press Google Scholar
  10. 10.
    Brosowski, B.; da Silva, A.R. 1994: Simple tests for multi-criteria optimality. OR Spektrum 16, 243–247 Google Scholar
  11. 11.
    Carmichael, D.G. 1980: Computation of Pareto optima in structural design. Int. J. Numer. Methods Eng. 15, 925–952 Google Scholar
  12. 12.
    Cavicchio, D.J. 1970: Adaptive Search Using Simulated Evolution. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI Google Scholar
  13. 13.
    Chankong, V.; Haimes, Y.Y. 1983: Multiobjective Decision Making Theory and Methodology. New York: Elsevier Science Publishing Google Scholar
  14. 14.
    Charnes, A.; Clower, R.W.; Kortanek, K.O. 1967: Effective control through coherent decentralization with preemptive goals. Econometrica 35, 294–320 Google Scholar
  15. 15.
    Charnes, A.; Cooper, W.W. 1961: Management Models and Industrial Applications of Linear Programming. New York: John Wiley and Sons Google Scholar
  16. 16.
    Charnes, A.; Cooper, W.W. 1977: Goal programming and multiple objective optimization; part 1. Eur. J. Oper. Res. 1, 39–54 Google Scholar
  17. 17.
    Charnes, A.; Cooper, W.W.; Ferguson, R.O. 1955: Optimal estimation of executive compensation by linear programming. Manage. Sci. 1, 138–151 Google Scholar
  18. 18.
    Chen, W.; Sahai, A.; Messac, A.; Sundararaj, G. 2000: Exploration of the effectiveness of physical programming in robust design. J. Mech. Des. 122, 155–163 Google Scholar
  19. 19.
    Chen, W.; Wiecek, M.M.; Zhang, J. 1999: Quality utility – a compromise programming approach to robust design. J. Mech. Des. 121, 179–187 Google Scholar
  20. 20.
    Cheng, F.Y.; Li, D. 1996: Multiobjective optimization of structures with and without control. J. Guid. Control Dyn. 19, 392–397 Google Scholar
  21. 21.
    Cheng, F.Y.; Li, D. 1997: Multiobjective optimization design with Pareto genetic algorithm. J. Struct. Eng. September, 1252–1261 Google Scholar
  22. 22.
    Cheng, F.Y.; Li, D. 1998: Genetic algorithm development for multiobjective optimization of structures. AIAA J. 36, 1105–1112 Google Scholar
  23. 23.
    Cheng, F.Y.; Li, X.S. 1998b: A generalized center method for multiobjective optimization. In: Frangopol, D.M. (ed.) Optimal Performance of Civil Infrastructure Systems. Reston: American Society of Civil Engineers Google Scholar
  24. 24.
    Chiampi, M.; Fuerntratt, G.; Magele, C.; Ragusa, C.; Repetto, M. 1998: Multi-objective optimization with stochastic algorithms and fuzzy definition of objective function. Int. J. Appl. Electromagn. Mech. 9, 381–389 Google Scholar
  25. 25.
    Choo, E.-U.; Atkins, D.R. 1983: Proper efficiency in nonconvex multicriteria programming. Math. Oper. Res. 8, 467–470 Google Scholar
  26. 26.
    Cohon, J.L. 1978: Multiobjective Programming and Planning. New York: Academic Press Google Scholar
  27. 27.
    Corley, H.W. 1980: A new scalar equivalence for Pareto optimization. IEEE Trans. Autom. Control 25, 829–830 Google Scholar
  28. 28.
    Coverstone-Carroll, V.; Hartmann, J.W.; Mason, W.J. 2000: Optimal multi-objective low-thrust spacecraft trajectories. Comput. Methods Appl. Mech. Eng. 186, 387–402 Google Scholar
  29. 29.
    Das, I. 1999: An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. In: ISSMO/UBCAD/AIASA, Third World Congress of Structural and Multidisciplinary Optimization (held in Buffalo). Buffalo: University of Buffalo, Center for Advanced Design Google Scholar
  30. 30.
    Das, I.; Dennis, J.E. 1997: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 Google Scholar
  31. 31.
    Das, I.; Dennis, J.E. 1998: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 Google Scholar
  32. 32.
    Dauer, J.P.; Krueger, R.J. 1980: A multiobjective optimization model for water resources planning. Appl. Math. Model. 4, 171–175 Google Scholar
  33. 33.
    Dauer, J.P.; Stadler, W. 1986: A survey of vector optimization in infinite dimensional spaces, part II. J. Optim. Theory Appl. 51, 205–242 Google Scholar
  34. 34.
    Davis, L. (ed.) 1991: Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold Google Scholar
  35. 35.
    Davis, M.D. 1983: Game Theory, A Nontechnical Introduction. New York: Dover Publications Google Scholar
  36. 36.
    Deb, K. 1989: Genetic Algorithms in Multimodal Function Optimization. MS Thesis, TCGA Report No. 89002, University of Alabama, Tuscaloosa, AL Google Scholar
  37. 37.
    Eckenrode, R.T. 1965: Weighting multiple criteria. Manage. Sci. 12, 180–192 Google Scholar
  38. 38.
    Elwakeil, O.A.; Arora, J.S. 1996: Two algorithms for global optimization of general NLP problems. Int. J. Numer. Methods Eng. 39, 3305–3325 Google Scholar
  39. 39.
    Eschenauer, H.; Koski, J.; Osyczka, A. (eds.) 1990: Multicriteria Design Optimization Procedures and Applications. Berlin: Springer-Verlag Google Scholar
  40. 40.
    Fonseca, C.M.; Fleming, P.J. 1993: Genetic algorithms for multiobjective optimization: formulation, discussion, and generalization. In: The Fifth International Conference on Genetic Algorithms (held in Urbana-Champaign), pp. 416–423. San Mateo: Morgan Kaufmann Google Scholar
  41. 41.
    Gembicki, F.W. 1974: Performance and Sensitivity Optimization: A Vector Index Approach. Ph.D. Dissertation, Case Western Research University, Cleveland, OH Google Scholar
  42. 42.
    Gen, M.; Cheng, R. 1997: Genetic Algorithms and Engineering Design. New York: John Wiley and Sons Google Scholar
  43. 43.
    Gen, M.; Liu, B. 1995: A Genetic Algorithm for Nonlinear Goal Programming. Technical Report ISE95-5, Ashikaga Institute of Technology, Ashikaga, Japan Google Scholar
  44. 44.
    Geoffrion, A.M. 1968: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 Google Scholar
  45. 45.
    Gerasimov, E.N.; Repko, V.N. 1978: Multicriterial optimization. Sov. Appl. Mech. 14, 1179–1184; translated from Prikladnaya Mekhanika 14, 72–78 (1978) Google Scholar
  46. 46.
    Goicoechea, A.; Duckstein, L.; Fogel, M.M. 1976: Multiobjective programming in watershed management: A case study of the Charleston watershed. Water Resour. Res. 12, 1085–1092 Google Scholar
  47. 47.
    Goicoechea, A.; Hansen, D.R.; Duckstein, L. 1982: Multiobjective Decision Analysis with Engineering and Business Applications. New York: John Wiley and Sons Google Scholar
  48. 48.
    Goldberg, D.E. 1989: Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley Google Scholar
  49. 49.
    Goldberg, D.E.; Richardson, J.J. 1987: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms (held in Cambridge, MA), pp. 41–49. Hillsdale: L. Erlbaum Associates Google Scholar
  50. 50.
    Goldberg, D.E.; Samtani, M.P. 1986: Engineering optimization via genetic algorithm. In: Proceedings of the Ninth Conference on Electronic Computation (held in Birmingham, AL), pp. 471–482. New York: American Society of Civil Engineers Google Scholar
  51. 51.
    Haimes, Y.Y.; Lasdon, L.S.; Wismer, D.A. 1971: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. SMC-1, 296–297 Google Scholar
  52. 52.
    Hallefjord, A.; Jornsten, K. 1986: An entropy target-point approach to multiobjective programming. Int. J. Syst. Sci. 17, 639–653 Google Scholar
  53. 53.
    Haug, E.J.; Arora, J.S. 1979: Applied Optimal Design: Mechanical and Structural Systems. New York: Wiley and Sons Google Scholar
  54. 54.
    Hillis, W.D. 1990: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42, 228–234 Google Scholar
  55. 55.
    Hobbs, B.F. 1980: A comparison of weighting methods in power plant siting. Decis. Sci. 11, 725–737 Google Scholar
  56. 56.
    Holland, J.H. 1975: Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press Google Scholar
  57. 57.
    Horn, J.; Nafpliotis, N.; Goldberg, D.E. 1994: A niched Pareto genetic algorithm for multiobjective optimization. In: The First IEEE Conference on Evolutionary Computation (held in Orlando), pp. 82–87. Piscataway: IEEE Neural Networks Council Google Scholar
  58. 58.
    Husbands, P. 1994: Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraint optimization. In: Fogarty, T.C. (ed.) Evolutionary Computing (Selected papers from AISB workshop, Leeds, UK), pp. 150–165. Berlin: Springer-Verlag Google Scholar
  59. 59.
    Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. 1993: A new approach for multiple objective decision making. Comput. Oper. Res. 20, 889–899 Google Scholar
  60. 60.
    Hwang, C.-L.; Md. Masud, A.S., in collaboration with Paidy, S.R. and Yoon, K. 1979: Multiple objective decision making, methods and applications: a state-of-the-art survey. In: Beckmann, M.; Kunzi, H.P. (eds.) Lecture Notes in Economics and Mathematical Systems, No. 164. Berlin: Springer-Verlag Google Scholar
  61. 61.
    Hwang, C.-L.; Yoon, K. 1981: Multiple attribute decision making methods and applications: a state-of-the-art survey. In: Beckmann, M.; Kunzi, H.P. (eds.) Lecture Notes in Economics and Mathematical Systems, No. 186. Berlin: Springer-Verlag Google Scholar
  62. 62.
    Ichida, K.; Fujii, Y. 1990: Multicriterion optimization using interval analysis. Comput. 44, 47–57 Google Scholar
  63. 63.
    Ijiri, Y. 1965: Management Goals and Accounting for Control. Amsterdam: North-Holland Google Scholar
  64. 64.
    Ishibuchi, H.; Murata, T. 1996: Multi-objective genetic local search algorithm. In: 1996 IEEE International Conference on Evolutionary Computation (held in Nagoya), pp. 119–124. Piscataway: Institute of Electrical and Electronics Engineers Google Scholar
  65. 65.
    Jendo, S.; Marks, W.; Thierauf, G. 1985: Multicriteria optimization in optimum structural design. Large Scale Syst. 9, 141–150 Google Scholar
  66. 66.
    Kaliszewski, I. 1985: A characterization of properly efficient solutions by an augmented Tchebycheff norm. Bull. Pol. Acad. Sci., Tech. Sci. 33, 415–420 Google Scholar
  67. 67.
    Kaliszewski, I. 1987: A modified Tchebycheff metric for multiple objective programming. Comput. Oper. Res. 14, 315–323 Google Scholar
  68. 68.
    Kielb, R.E.; Kaza, K.R.V. 1983: Aeroelastic characteristics of a cascade of mistuned blades in subsonic and supersonic flows. J. Vib. Acoust. Stress Reliab. Des. 105, 425–433 Google Scholar
  69. 69.
    Kocer, F.Y.; Arora, J.S. 1999: Optimal design of H-frame transmission poles for earthquake loading. J. Struct. Eng. 125, 1299–1308 Google Scholar
  70. 70.
    Koski, J. 1979: Truss Optimization with Vector Criterion. Report Number 6, Tampere University of Technology, Tampere, Finland Google Scholar
  71. 71.
    Koski, J. 1980: Truss Optimization with Vector Criterion, Examples. Report Number 7, Tampere University of Technology, Tampere, Finland Google Scholar
  72. 72.
    Koski, J. 1984: Multicriterion optimization in structural design. In: Atrek, E.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C. (eds.) New Directions in Optimum Structural Design, pp. 483–503. New York: John Wiley and Sons Google Scholar
  73. 73.
    Koski, J. 1985: Defectiveness of weighting method in multicriterion optimization of structures. Commun. Appl. Numer. Methods 1, 333–337 Google Scholar
  74. 74.
    Koski, J. 1988: Multicriteria truss optimization. In: Stadler, W. (ed.) Multicriteria Optimization in Engineering and in the Sciences. New York: Plenum Press Google Scholar
  75. 75.
    Koski, J.; Silvennoinen, R. 1987: Norm methods and partial weighting in multicriterion optimization of structures. Int. J. Numer. Methods Eng. 24, 1101–1121 Google Scholar
  76. 76.
    Kuhn, H.W.; Tucker, A.W. 1950: Nonlinear programming. In: Neyman, J. (ed.) The Second Berkley Symposium on Mathematical Statistics and Probability (held in Berkley 1951), pp. 481–492. Berkley: University of California Press Google Scholar
  77. 77.
    Kursawe, F. 1991: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P.; Manner, R. (eds.) Parallel Problem Solving from Nature. Berlin: Springer-Verlag Google Scholar
  78. 78.
    Lee, S.M.; Olson, D.L. 1999: Goal programming. In: Gal, T.; Stewart, T.J.; Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications. Boston: Kluwer Academic Publishers Google Scholar
  79. 79.
    Leitmann, G. 1977: Some problems of scalar and vector-valued optimization in linear viscoelasticity. J. Optim. Theory Appl. 23, 93–99 Google Scholar
  80. 80.
    Leu, S.-S.; Yang, C.-H. 1999: GA-based multicriteria optimal model for construction scheduling. J. Constr. Eng. Manage. 125, 420–427 Google Scholar
  81. 81.
    Li, X.S. 1992: An entropy-based aggregate method for minimax optimization. Eng. Optim. 18, 277–285 Google Scholar
  82. 82.
    Lin, J.G. 1976: Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints. IEEE Trans. Autom. Control AC-21, 641–651 Google Scholar
  83. 83.
    Majid, K.I. 1974: Optimal Design of Structures. London: Butterworths Google Scholar
  84. 84.
    Mansfield, E. 1985: Microeconomics Theory/Applications, 5th edn. New York: W.W. Norton Google Scholar
  85. 85.
    Marler, R.T.; Arora, J.S. 2003: Review of Multi-Objective Optimization Concepts and Methods for Engineering. Technical Report Number ODL-01.01, University of Iowa, Optimal Design Laboratory, Iowa City, IA Google Scholar
  86. 86.
    Martinez, M.P.; Messac, A.; Rais-Rohani, M. 2001: Manufacturability-based optimization of aircraft structures using physical programming. AIAA J. 39, 517–525 Google Scholar
  87. 87.
    Mazumdar, R.; Mason, L.G.; Douligeris, C. 1991: Fairness in network optimal flow control: optimality of product forms. IEEE Trans. Commun. 39, 775–782 Google Scholar
  88. 88.
    Messac, A. 1996: Physical programming: effective optimization for computational design. AIAA J. 34, 149–158 Google Scholar
  89. 89.
    Messac, A. 2000: From dubious construction of objective functions to the application of physical programming. AIAA J. 38, 155–163 Google Scholar
  90. 90.
    Messac, A.; Hattis, P. 1996: Physical programming design optimization for high speed civil transport (HSCT). J. Aircr. 33, 446–449 Google Scholar
  91. 91.
    Messac, A.; Ismail-Yahaya, A.; Mattson, C.A. 2003: The normalized normal constraint method for generating the Pareto frontier. Struct. Multidisc. Optim. 25, 86–98 Google Scholar
  92. 92.
    Messac, A.; Mattson, C.A. 2002: Generating well-distributed sets of Pareto points for engineering design using physical programming. Optim. Eng. 3 431–450 Google Scholar
  93. 93.
    Messac, A.; Puemi-Sukam, C.; Melachrinoudis, E. 2001: Mathematical and pragmatic perspectives of physical programming. AIAA J. 39, 885–893 Google Scholar
  94. 94.
    Messac, A.; Sukam, C.P.; Melachrinoudis, E. 2000a: Aggregate objective functions and Pareto frontiers: required relationships and practical implications. Optim. Eng. 1, 171–188 Google Scholar
  95. 95.
    Messac, A.; Sundararaj, G.J.; Tappeta, R.V.; Renaud, J.E. 2000b: Ability of objective functions to generate points on nonconvex Pareto frontiers. AIAA J. 38, 1084–1091 Google Scholar
  96. 96.
    Messac, A.; Wilson, B. 1998: Physical programming for computational control. AIAA J. 36, 219–226 Google Scholar
  97. 97.
    Messac, A.; Van Dessel, S.; Mullur, A.A.; Maria, A. 2004: Optimization of large scale rigidified inflatable structures for housing using physical programming. Struct. Multidisc. Optim. 26, 139–151 Google Scholar
  98. 98.
    Miettinen, K. 1999: Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers Google Scholar
  99. 99.
    Murata, T.; Ishibuchi, H.; Tanaka, H. 1996: Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput. Ind. Eng. 30, 957–968 Google Scholar
  100. 100.
    Narayana, S.; Azarm, S. 1999: On improving multiobjective genetic algorithms for design optimization. Struct. Optim. 18, 146–155 Google Scholar
  101. 101.
    Nash, J. 1950: The bargaining problem. Econometrica 18, 155–162 Google Scholar
  102. 102.
    Ogryczak, W. 1994: A goal programming model of the reference point method. Ann. Oper. Res. 51, 33–44 Google Scholar
  103. 103.
    Osyczka, A. 1978: An approach to multicriterion optimization problems for engineering design. Comput. Methods Appl. Mech. Eng. 15, 309–333 Google Scholar
  104. 104.
    Osyczka, A. 1981: An approach to multicriterion optimization for structural design. In: International Symposium on Optimal Structural Design: 11th ONR Naval Structural Mechanics Symposium (held in Tucson), pp. 10.37–10.40. Tucson: University of Arizona Google Scholar
  105. 105.
    Osyczka, A. 1984: Multicriterion Optimization in Engineering with Fortran Programs. New York: John Wiley and Sons Google Scholar
  106. 106.
    Osyczka, A. 1985: Computer aided multicriterion optimization method. Adv. Model. Simul. 3, 41–52 Google Scholar
  107. 107.
    Osyczka, A.; Kundu, S. 1996: A modified distance method for multicriteria optimization, using genetic algorithms. Comput. Ind. Eng. 30, 871–882 Google Scholar
  108. 108.
    Pareto, V. 1906: Manuale di Economica Politica, Societa Editrice Libraria. Milan; translated into English by A.S. Schwier as Manual of Political Economy, edited by A.S. Schwier and A.N. Page, 1971. New York: A.M. Kelley Google Scholar
  109. 109.
    Poloni, C.; Giurgevich, A.; Onesti, L.; Pediroda, V. 2000: Hybridization of a multi-objective genetic algorithm, a neural network, and a classical optimizer for a complex design problem in fluid dynamics. Comput. Methods Appl. Mech. Eng. 186, 403–420 Google Scholar
  110. 110.
    Proos, K.A.; Steven, G.P.; Querin, O.M.; Xie, Y.M. 2001: Multicriterion evolutionary structural optimization using the weighted and the global criterion methods. AIAA J. 39, 2006–2012 Google Scholar
  111. 111.
    Psarras, J.; Capros, P.; Samouilidis, J.-E. 1990: Multiobjective programming. Energy 15, 583–605 Google Scholar
  112. 112.
    Rao, J.R.; Roy, N. 1989: Fuzzy set theoretic approach of assigning weights to objectives in multicriteria decision making. Int. J. Syst. Sci. 20, 1381–1386 Google Scholar
  113. 113.
    Rao, S.S. 1987: Game theory approach for multiobjective structural optimization. Comput. Struct. 25, 119–127 Google Scholar
  114. 114.
    Rao, S.S.; Freiheit, T.I. 1991: A modified game theory approach to multiobjective optimization. J. Mech. Des. 113, 286–291 Google Scholar
  115. 115.
    Rao, S.S.; Hati, S.K. 1980: Optimum design of shock and vibration isolation systems using game theory. Eng. Optim. 4, 215–226 Google Scholar
  116. 116.
    Rao, S.S.; Venkayya, V.B.; Khot, N.S. 1988: Game theory approach for the integrated design of structures and controls. AIAA J. 26, 463–469 Google Scholar
  117. 117.
    Rentmeesters, M.J.; Tsai, W.K.; Lin, K.-J. 1996: A theory of lexicographic multi-criteria optimization. In: Second IEEE International Conference on Engineering of Complex Computer Systems (held in Montreal), pp. 76–79. Los Alamitos: IEEE Computer Society Press Google Scholar
  118. 118.
    Richardson, J.T.; Palmer, M.R.; Liepins, G.; Hilliard, M. 1989: Some guidelines for genetic algorithms with penalty functions. In: Schaffer, J.D. (ed.) Third International Conference on Genetic Algorithms (held in Arlington), pp. 191–197. San Mateo: Morgan Kaufmann Google Scholar
  119. 119.
    Romero, C.; Tamiz, M.; Jones, D.F. 1998: Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations. J. Oper. Res. Soc. 49, 986–991 Google Scholar
  120. 120.
    Roy, B.; Vincke, P. 1981: Multicriteria analysis: survey and new directions. Eur. J. Oper. Res. 8, 207–218 Google Scholar
  121. 121.
    Ruiz-Canales, P.; Rufian-Lizana, A. 1995: A characterization of weakly efficient points. Math. Program. 68, 205–212 Google Scholar
  122. 122.
    Saaty, T.L. 1977: A scaling method for priorities in hierarchies, multiple objectives and fuzzy sets. J. Math. Psych. 15, 234–281 Google Scholar
  123. 123.
    Salukvadze, M.E. 1971a: Optimization of vector functionals, I, programming of optimal trajectories. Avtomatika i Telemekhanika 8, 5–15 (in Russian) Google Scholar
  124. 124.
    Salukvadze, M.E. 1971b: Optimization of vector functionals, II, the analytic construction of optimal controls. Avtomatika i Telemekhanika 9, 5–15 (in Russian) Google Scholar
  125. 125.
    Salukvadze, M.E. 1979: Vector-Valued Optimization Problems in Control Theory. New York: Academic Press Google Scholar
  126. 126.
    Schaffer, J.D. 1985: Multiple objective optimization with vector evaluated genetic algorithms. In: The First International Conference on Genetic Algorithms and their Applications (held in Pittsburgh), pp. 93–100. Hillsdale: Lawrence Erlbaum Associates Google Scholar
  127. 127.
    Schaumann, E.J.; Balling, R.J.; Day, K. 1998: Genetic algorithms with multiple objectives. In: Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in St. Louis), pp. 2114–2123. Washington, DC: American Institute of Aeronautics and Astronautics Google Scholar
  128. 128.
    Srinivas, N.; Deb, K. 1995: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2, 221–248 Google Scholar
  129. 129.
    Stadler, W. 1977: Natural structural shapes of shallow arches. J. Appl. Mech. 44, 291–298 Google Scholar
  130. 130.
    Stadler, W. 1978: Natural strutural shapes (the static case). Q. J. Mech. Appl. Math. 31, 169–217 Google Scholar
  131. 131.
    Stadler, W. 1987: Initiators of multicriteria optimization. In: Jahn, J.; Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, No. 294, pp. 3–25. Berlin: Springer-Verlag Google Scholar
  132. 132.
    Stadler, W. 1988: Fundamentals of multicriteria optimization. In: Stadler, W. (ed.) Multicriteria Optimization in Engineering and in the Sciences, pp. 1–25. New York: Plenum Press Google Scholar
  133. 133.
    Stadler, W. 1995: Caveats and boons of multicriteria optimization. Microcomput. Civ. Eng. 10, 291–299 Google Scholar
  134. 134.
    Stadler, W.; Dauer, J.P. 1992: Multicriteria optimization in engineering: a tutorial and survey. In: Kamat, M.P. (ed.) Structural Optimization: Status and Promise, pp. 211–249. Washington, DC: American Institute of Aeronautics and Astronautics Google Scholar
  135. 135.
    Steuer, R.E. 1989: Multiple Criteria Optimization: Theory, Computation, and Application. Malabar: Robert E. Krieger Publishing Google Scholar
  136. 136.
    Steuer, R.E.; Choo, E.-U. 1983: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 Google Scholar
  137. 137.
    Straffin, P.D. 1993: Game Theory and Strategy. Washington, DC: The Mathematical Association of America Google Scholar
  138. 138.
    Tind, J.; Wiecek, M.M. 1999: Augmented Lagrangian and Tchebycheff approaches in multiple objective programming. J. Global Optim. 14, 251–266 Google Scholar
  139. 139.
    Torn, A.A.; Zilinskas, A. 1987: Global optimization. In: Goos, G.; Hartmanis, J. (eds.) Lecture Notes in Economics and Mathematical Systems, No. 350. Berlin: Springer-Verlag Google Scholar
  140. 140.
    Tseng, C.H.; Lu, T.W. 1990: Minimax multiobjective optimization in structural design. Int. J. Numer. Methods Eng. 30, 1213–1228 Google Scholar
  141. 141.
    Vasarhelhi, A.; Logo, J. 1986: Design of steel frames by multicriterion optimization. Acta Tech. (Budapest) 99, 413–418 Google Scholar
  142. 142.
    Vincent, T.L. 1983: Game theory as a design tool. ASME J. Mech. Transm. Autom. Des. 105, 165–170 Google Scholar
  143. 143.
    Vincent, T.L.; Grantham, W.J. 1981: Optimality in Parametric Systems. New York: John Wiley and Sons Google Scholar
  144. 144.
    Voogd, H. 1983: Multicriteria Evaluation for Urban and Regional Planning. London: Pion Google Scholar
  145. 145.
    Waltz, F.M. 1967: An engineering approach: hierarchical optimization criteria. IEEE Trans. Autom. Control AC-12, 179–180 Google Scholar
  146. 146.
    Wendell, R.E.; Lee, D.N. 1977: Efficiency in multiple objective optimization problems. Math. Program. 12, 406–414 Google Scholar
  147. 147.
    Wierzbicki, A.P. 1982: A mathematical basis for satisficing decision making. Math. Model. 3, 391–405 Google Scholar
  148. 148.
    Wierzbicki, A.P. 1986: A methodological approach to comparing parametric characterizations of efficient solutions. In: Fandel, G.; Grauer, M.; Kurzhanski, A.; Wierzbicki, A.P. (eds.) Large-Scale Modeling and Interactive Decision Analysis, Lecture Notes in Economics and Mathematical Systems, No. 273, pp. 27–45. Berlin: Springer-Verlag Google Scholar
  149. 149.
    Yoon, K.P. 1980: System Selection by Multiple Attribute Decision Making. Ph.D. Dissertation, Kansas State University, Manhattan, KS Google Scholar
  150. 150.
    Yoon, K.P; Hwang, C.-L. 1995: Multiple Attribute Decision Making, An Introduction. London: Sage PublicationsGoogle Scholar
  151. 151.
    Yu, P.-L. 1973: A class of solutions for group decision problems. Manage. Sci. 19, 936–946 Google Scholar
  152. 152.
    Yu, P.-L. 1974: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 Google Scholar
  153. 153.
    Yu, P.-L. 1985: Multiple-Criteria Decision Making Concepts, Techniques, and Extensions. New York: Plenum Press Google Scholar
  154. 154.
    Yu, P.-L.; Leitmann, G. 1974: Compromise solutions, domination structures, and Salukvadze’s solution. J. Optim. Theory Appl. 13, 362–378 Google Scholar
  155. 155.
    Zadeh, L.A. 1963: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control AC-8, 59–60 Google Scholar
  156. 156.
    Zeleny, M. 1982: Multiple Criteria Decision Making. New York: McGraw Hill Google Scholar
  157. 157.
    Zionts, S. 1988: Multiple criteria mathematical programming: an updated overview and several approaches. In: Mitra, G. (ed.) Mathematical Models for Decision Support, pp. 135–167. Berlin: Springer-VerlagGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Optimal Design Laboratory, College of EngineeringThe University of IowaIowa CityUSA

Personalised recommendations