Structural shape and topology optimization in a level-set-based framework of region representation

  • X. Wang
  • M.Y. Wang Email author
  • D. Guo
Research paper


In this paper we present a new framework to approach the problem of structural shape and topology optimization. We use a level-set method as a region representation with a moving boundary model. As a boundary optimization problem, the structural boundary description is implicitly embedded in a scalar function as its “iso-surfaces.” Such level-set models are flexible in handling complex topological changes and are concise in describing the material regions of the structure. Furthermore, by using a simple Hamilton–Jacobi convection equation, the movement of the implicit moving boundaries of the structure is driven by a transformation of the objective and the constraints into a speed function that defines the level-set propagation. The result is a 3D structural optimization technique that demonstrates outstanding flexibility in handling topological changes, the fidelity of boundary representation, and the degree of automation, comparing favorably with other methods in the literature based on explicit boundary variation or homogenization. We present two numerical techniques of conjugate mapping and variational regularization for further enhancement of the level-set computation, in addition to the use of efficient up-wind schemes. The method is tested with several examples of a linear elastic structure that are widely reported in the topology optimization literature.


structural optimization topology optimization shape optimization boundary optimization level-set methods region representation  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaire, G. 1997: The homogenization method for topology and shape optimization. In: Rozvany, G. (ed.) Topology Optimization in Structural Mechanics, pp. 101–133 Google Scholar
  2. 2.
    Allaire, G.; Jouve, F.; Taoder, A.-M. 2002: A level-set method for shape optimization. C. R. Acad. Sci. Paris, Ser. I 334, 1–6 Google Scholar
  3. 3.
    Bendsoe, M.P. 1989: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 Google Scholar
  4. 4.
    Bendsoe, M.P. 1997: Optimization of Structural Topology, Shape and Material. Berlin: Springer Google Scholar
  5. 5.
    Bendsoe, M.P. 1999: Variable-topology optimization: Status and challenges. In: Wunderlich, W. (ed.) Proceedings of the European Conference on Computational Mechanics (held in Munich, Germany) Google Scholar
  6. 6.
    Bendsoe, M.P.; Haber, R. 1993: The Michell layout problem as a low volume fraction limit of the homogenization method for topology design: an asymptotic study. Struct. Optim. 6, 63–267 Google Scholar
  7. 7.
    Bendsoe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenisation method. Comput. Methods Appl. Mech. Eng. 71, 197–224 Google Scholar
  8. 8.
    Bendsoe, M.P.; Sigmund, O. 1999: Material interpolations in topology optimization. Arch. Appl. Mech. 69, 635–654 Google Scholar
  9. 9.
    Breen, D.; Whitaker, R. 2001: A level set approach for the metamorphosis of solid models. IEEE Trans. Visual. Comput. Graphics 7(2), 173–192 Google Scholar
  10. 10.
    Bulman, S.; Sienz, J.; Hinton, E. 2001: Comparisons between algorithms for structural topology optimization using a series of benchmark studies. Comput. Struct. 79, 1203–1218 Google Scholar
  11. 11.
    Diaz, A.R.; Bendsoe, M.P. 1992: Shape optimization of structures for multiple loading conditions using a homogenization method. Struct. Optim. 4, 17–22 Google Scholar
  12. 12.
    Eschenauer, H.A.; Kobelev, H.A.; Schumacher, A. 1994: Bubble method for topology and shape optimization of structures. Struct. Optim. 8, 142–151 Google Scholar
  13. 13.
    Eschenauer, H.A.; Schumacher, A. 1997: Topology and shape optimization procedures using hole positioning criteria. In: Rozvany, G. (ed.) Topology Optimization in Structural Mechanics, pp. 135–196 . Wien: Springer Google Scholar
  14. 14.
    Lewinski, T.; Sokolowski, J.; Zochowski, A. 1999: Justification of the bubble method for the compliance minimization problems of plates and spherical shells. Proc. 3rd World Congress of Structural and Multidisciplinary Optimization (WCSMO-3) (held in Buffalo, NY) Google Scholar
  15. 15.
    Lin, C.Y.; Chao, L.-S. 2000: Automated image interpretation for integrated topology and shape optimization. Struct. Multidisc. Optim. 20, 125–137 Google Scholar
  16. 16.
    Mlejnek, H.P. 1992: Some aspects of the genesis of structures. Struct. Optim. 5, 64–69 Google Scholar
  17. 17.
    Osher, S.; Sethian, J.A. 1988: Front propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 Google Scholar
  18. 18.
    Osher, S.; Fedkiw, R. Level set methods: an overview and some recent results. J. Comput. Phys. 169, 475–502 Google Scholar
  19. 19.
    Peng, D.; Merriman, B.; Osher, S.; Zhao, H.-K.; Kang, M. 1999: A PED-based fast local level set method. J. Comput. Phys. 155, 410–438 Google Scholar
  20. 20.
    Reynolds, D.; McConnachie, J.P.; Bettess, W.; Christie, C.; J. Bull, W. 1999: Reverse Adaptivity – a new evolutionary tool for structural optimization. Int. J. Numer. Methods Eng. 45, 529–552 Google Scholar
  21. 21.
    Rozvany, G. 1989: Structural Design via Optimality Criteria. Dordrecht: Kluwer Google Scholar
  22. 22.
    Rozvany, G.; Zhou, M. 1991: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 Google Scholar
  23. 23.
    Rozvany, G.; Zhou, M.; Birker, T. 1992: Generalized shape optimization without homogenization. Struct. Optim. 4, 250–252 Google Scholar
  24. 24.
    Rozvany, G. 2001: Aims, scope, methods, history and unified terminology of computer aided topology optimization in structural mechanics. Struct. Multidisc. Optim. 21, 90–108 Google Scholar
  25. 25.
    Sapiro, G. 2001: Geometric Partial Differential Equations and Image Analysis. Cambridge: Cambridge University Press Google Scholar
  26. 26.
    Sethian, J.A.; Wiegmann, A. 2000: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 Google Scholar
  27. 27.
    Sethian, J.A. 1999: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge: Cambridge University PressGoogle Scholar
  28. 28.
    Shu, C.-W. 1988: Total-variation-diminishing time discretization. SIAM J. Sci. Stat. Comput. 9, 1073–1084Google Scholar
  29. 29.
    Shu, C.-W.; Osher, S. 1988: Efficient implementation of essentially non-oscillatory shock capture schemes. J. Comput. Phys. 77, 439–471 Google Scholar
  30. 30.
    Sigmund, O. 2000: Topology optimization: A tool for the tailoring of structures and materials. Philos. Trans.: Math. Phys. Eng. Sci. 358, 211–228 Google Scholar
  31. 31.
    Sigmund, O. 2001: A 99 topology optimization code written in Matlab. Struct. Multidisc. Optim. 21, 120–718 Google Scholar
  32. 32.
    Sokolowski, J.; Zochowski, A. 1999: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272Google Scholar
  33. 33.
    Sokolowski, J.; Zolesio, J.P. 1992: Introduction to Shape Optimization: Shape Sensitivity Analysis. New York: Springer-Verlag Google Scholar
  34. 34.
    Suzuki, K.; Kikuchi, N. 1991: A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93, 291–381 Google Scholar
  35. 35.
    Wang, M.Y.; Wang, X.M.; Guo, D.M. 2003: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1-2), 227–246 Google Scholar
  36. 36.
    Wang, M.Y.; Wang, X.M. 2003: A multi-phase level set model for multi-material structural optimization. Proc. 5th World Congress of Structural and Multidisciplinary Optimization (WCSMO5) (held in Lido di Jesolo, Italy) Google Scholar
  37. 37.
    Xie, Y.M.; Steven, G.P. 1997: Evolutionary Structural Optimization. New York: SpringerGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.School of Mechanical EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Automation & Computer-Aided EngineeringThe Chinese University of Hong KongHong KongChina

Personalised recommendations