Structural and Multidisciplinary Optimization

, Volume 26, Issue 5, pp 308–317 | Cite as

An integrated approach to topology, sizing, and shape optimization

Research paper


Topology optimization has become very popular in industrial applications, and most FEM codes have implemented certain capabilities of topology optimization. However, most codes do not allow simultaneous treatment of sizing and shape optimization during the topology optimization phase. This poses a limitation on the design space and therefore prevents finding possible better designs since the interaction of sizing and shape variables with topology modification is excluded. In this paper, an integrated approach is developed to provide the user with the freedom of combining sizing, shape, and topology optimization in a single process.


structural optimization topology optimization shape optimization sizing optimization software  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaire, G.; Kohn, R.V. 1993: Topology optimization and optimal shape design using homogenization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.) Topology design of structures, 207–218 Google Scholar
  2. 2.
    Altair HyperMesh 2000: Users manual. Altair Engineering, Inc., Troy, MI Google Scholar
  3. 3.
    Altair OptiStruct 1999: Users manual. Altair Engineering, Inc., Troy, MIGoogle Scholar
  4. 4.
    ANSYS 1999: Users manual. ANSYS, Inc., Houston, PA Google Scholar
  5. 5.
    Barthelemy, J.M.; Haftka, R.T. 1993: Recent advances in approximation concepts for optimum structural design. Struct. Optim. 12, 129–144 Google Scholar
  6. 6.
    Bendsøe, M. 1989: Optimum shape design as a material distribution problem. Struct. Optim. 1, 193–202 Google Scholar
  7. 7.
    Bendsøe, M. 1995: Optimization of structural topology, shape and material. Berlin: Springer-Verlag Google Scholar
  8. 8.
    Bendsøe, M.; Kikuchi, N. 1988: Generating optimal topologies in optimal design using a homogenization method. Comp. Meth. Appl. Mech. Engrg. 71, 197–224 Google Scholar
  9. 9.
    Canfield, R.A. 1990: High quality approximation of eigenvalues in structural optimization. AIAA J. 28, 1143–1149 Google Scholar
  10. 10.
    Chang, K.H.; Choi, K.K. 1992: A geometry-based parameterization method for shape design of elastic solids. Mech. Struct. & Mach. 20, 215–252 Google Scholar
  11. 11.
    Ding, Y. 1986: Shape optimization of structures – a literature survey. Comp. Struct. 24, 985–1004 Google Scholar
  12. 12.
    Fluery, C. 1989: CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct. Optim. 1, 81–89 Google Scholar
  13. 13.
    Fleury, C.; Braibant, V. 1986: Structural optimization: a new dual method using mixed variables. Int. J. Num. Meth. Engrg. 23, 409–428 Google Scholar
  14. 14.
    GENESIS 1999: Users manual. VMA Engineering, Inc., Colorado Springs, COGoogle Scholar
  15. 15.
    Haftka, R.T.; Adelman, H.M. 1993: Sensitivity of discrete systems. In: Rozvany, G.I.N. (ed.) Optimization of Large Structural Systems, Dordrecht: Kluwer Academic Publishers, pp. 289–212 Google Scholar
  16. 16.
    Haftka, R.T.; Grandhi, R.V. 1986: Structural shape optimization – a survey. Comp. Meth. Appl. Mech. Engrg. 57, 91–106 Google Scholar
  17. 17.
    Haftka, R.T.; Gürdal, Z. 1992: Elements of structural optimization. Dordrecht: Kluwer Acad. Publ. Google Scholar
  18. 18.
    Haftka, R.T.; Starnes, J.H. 1976: Application of a quadratic extended interior penalty function for structural optimization. AIAA J. 14, 718–724 Google Scholar
  19. 19.
    Kikuchi, N.; Chung, K.Y.; Torigaki, T.; Taylor, E. 1986: Adaptive finite element methods for shape optimization. Comp. Meth. Appl. Mech. Engrg. 57, 67–89 Google Scholar
  20. 20.
    Kirsch, U. 1993: Structural optimization: fundamentals and applications. Berlin: Springer-Verlag Google Scholar
  21. 21.
    MSC/NASTRAN 1999: Users manual. MSC Software, Inc., Los Angeles, CA Google Scholar
  22. 22.
    Olhoff, N.; Rasmussen, J.; Lund, E. 1993: Method of “exact” numerical differentiation for error elimination in finite element based semi-analytical sensitivity analysis. Mech. Struct. Mach. 21, 1–66 Google Scholar
  23. 23.
    Olhoff, N.; Rønholt, E.; Scheel, J. 1998: Topology optimization of plate-like structures using 3-D elasticity and optimum 3-D microstructures. Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, 1853–1863 Google Scholar
  24. 24.
    Rozvany, G.I.N.; Bendsøe, M.; Kirsch, U. 1995: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119Google Scholar
  25. 25.
    Schleupen, A.; Maute, K.; Ramm, E. 1995: Adaptive FE-procedures in shape optimization. Struct. Optim. 19, 282–302 Google Scholar
  26. 26.
    Schmit, L.A. 1981: Structural synthesis – its genesis and development. AIAA J. 19, 1249–1263 Google Scholar
  27. 27.
    Schmit, L.A.; Farshi, B. 1974: Some approximation concepts for structural synthesis. AIAA J., 12, 692–699 Google Scholar
  28. 28.
    Schramm, U.; Pilkey, W.D. 1993: The coupling of geometric descriptions and finite elements using NURBs – a study in shape optimization. Finite Elements in Analysis and Design, 15, 11–34 Google Scholar
  29. 29.
    Sigmund, O.; Petersson, J. 1998: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75 Google Scholar
  30. 30.
    Thomas, H.L. 1996: Optimization of structures designed using nonlinear FEM analysis. Proc. 7th AIAA/ASME/ASCE/AHS/ASC 37 th Structures, Structural Dynamics and materials conference, April, Salt Lake City, UT Google Scholar
  31. 31.
    Vanderplaats, G.N. 1973: CONMIN – a Fortran program for constrained function minimization: user’s manual. NASA TM X-62282 Google Scholar
  32. 32.
    Vanderplaats, G.N. 1982: Structural optimization – past, present and future. AIAA J. 20, 992–1000 Google Scholar
  33. 33.
    Vanderplaats, G.N.; Salajegheh, E. 1989: A new approximation method for stress constraints in structural synthesis. AIAA J. 27, 252–358 Google Scholar
  34. 34.
    Vanderplaats, G.N.; Thomas, H.L. 1993: An improved approximation for stress constraints in plate structures. Struct. Optim. 6, 1–6 Google Scholar
  35. 35.
    Voth, B. 1999: Using automatically generated shape variables to optimize stamped plates. Technical Memorandum, Altair Engineering, Inc., Troy, MI Google Scholar
  36. 36.
    Yang, R.J.; Lee, A.; McGeen, D.T. 1992: Application of basis function concept to practical shape optimization problems. Struct. Optim. 5, 55–63 Google Scholar
  37. 37.
    Zhou, M. 1989: Geometrical optimization of trusses by a two-level approximation concept. Struct. Optim. 1, 235–240 Google Scholar
  38. 38.
    Zhou, M.; Rozvany, G.I.N. 1991: The COC algorithm, Part II: topological, geometry and generalized shape optimization. Comp. Meth. Appl. Mech. Engrg. 89, 197–224 Google Scholar
  39. 39.
    Zhou, M.; Shyy, Y.K.; Thomas, H.L. 1999: Checkerboard and Minimum Member Size Control in Topology Optimization. Struct. Multidisc. Optim. 21, 152–158 Google Scholar
  40. 40.
    Zhou, M.; Thomas, H.L. 1993: Alternative approximation for stresses in plate structures. AIAA J. 31, 2169–2174 Google Scholar
  41. 41.
    Zhou, M.; Xia, R.W. 1990: Two-level approximation concept in structural synthesis. Int. J. Num. Meth. Engrg. 29, 1681–1699 Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Zhou
    • 1
  • N. Pagaldipti
    • 1
  • H.L. Thomas
    • 1
  • Y.K. Shyy
    • 1
  1. 1.Altair Engineering, Inc.IrvineUSA

Personalised recommendations