Structural and Multidisciplinary Optimization

, Volume 25, Issue 5–6, pp 368–382 | Cite as

Topology optimization design of crushed 2D-frames for desired energy absorption history

  • C.B.W. PedersenEmail author
Research paper


The present work deals with topology optimization for obtaining a desired energy absorption history of a crushed structure. The optimized energy absorbing structures are used to improve the crashworthiness of transportation vehicles. The ground structure consists of rectangular 2D-beam elements with plastic hinges. The elements can undergo large rotations, so the analysis accommodates geometric nonlinearities. A quasi-static nonlinear finite element solution is obtained with an implicit backward Euler algorithm, and the analytical sensitivities are computed by the direct differentiation method.


topology optimization large displacements plastic hinges analytical sensitivity analysis energy absorption crashworthiness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosio, J.A.C.; Pereira. M.S. 1997: Multibody dynamic tools for crashworthiness and impact. In: Ambrosio, J.A.C.; Seabra Pereira, M.F.O.; Pina da Silva, F. (eds.) Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection. Dordrecht: Kluwer Academic Publishers Google Scholar
  2. 2.
    Bendsøe, M.P. 1995.: Optimization of Structural Topology, Shape and Material. Berlin, Heidelberg, New York: Springer-Verlag Google Scholar
  3. 3.
    Bendsøe, M.P.; Guedes, J.M.; Plaxton, S.; Taylor, J.E. 1995: Optimization of structure and material properties for solids composed of softening material. Int. J. Solids Struct. 33, 1799–1813 Google Scholar
  4. 4.
    Bruns, T.; Tortorelli, D.A. 2001: Topology optimization of nonlinear elastic structures and compliant mechanisms. Comp. Methods Appl. Mech. Eng. 190, 3443–3458 Google Scholar
  5. 5.
    Bruns, T.; Tortorelli, D.A. 2003: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int. J. Numer. Methods Eng. 57, 1413–1430 Google Scholar
  6. 6.
    Buhl, T.; Pedersen, C.B.W.; Sigmund, O. 2000: Stiffness design of geometrically non-linear structures using topology optimization. Struct. Multidisc. Optim. 19, 93–104 Google Scholar
  7. 7.
    Chen, S. 2001: An approach for impact structure optimization using the robust genetic algorithm. Finite Elem. Anal. Des. 37, 431–446 Google Scholar
  8. 8.
    Cho, S.; Choi, K.K. 2000a: Design sensitivity analysis and optimization of non-linear transient dynamics. part i – sizing design. Int. J. Numer. Methods Eng. 48, 351–373 Google Scholar
  9. 9.
    Cho, S.; Choi, K.K. 2000b: Design sensitivity analysis and optimization of non-linear transient dynamics. part ii – configuration design. Int. J. Numer. Methods Eng. 48, 375–399 Google Scholar
  10. 10.
    Diaz, A.R.; Ignatovich, C.L.; Soto, C.A. 2000: Strategies in design for enhanced crashworthiness. In: Rozvany, G.I.N.; Olhoff, N. (eds.) NATO/ISSMO ARW on Topology Optimization of Structures and Composite Continua (held in Budapest, Hungary), Dordrecht: Kluwer Academic Publishers Google Scholar
  11. 11.
    Diaz A.R.; Soto C.A. 1999: Lattice models for crash resistant design and optimization. In: Proc. 3rd WCSMO (New York Univ. Buffalo), pp. 233–235 Google Scholar
  12. 12.
    Ebisugi, T.; Fujita, H.; Watanabe, G. 1998: Study of optimal structure design method for dynamic nonlinear problem. JSAE Rev. 19, 251–255 Google Scholar
  13. 13.
    Esche, S.K.; Kinzel, G.L.; Altan, T. 1997: Issues in convergence improvement for non-linear finite element programs. Int. J. Numer. Methods Eng. 40, 4577–4594 Google Scholar
  14. 14.
    Gebbeken, N. 1998: A refined numerical approach for the ultimate-load analysis of 3-d steel rod structures. Eng. Comput. 15, 312–344 Google Scholar
  15. 15.
    Hajela, P.; Lee, E. 1997: Topological optimization of rotorcraft subfloor structures for crashworthiness considerations. Comput. Struct. 64, 65–76 Google Scholar
  16. 16.
    Heung-Soo, K.; Wierzbicki, T. 2001: Crush behavior of thin-walled prismatic columns under combined bending and compression. Comput. Struct. 79, 1417–1432 Google Scholar
  17. 17.
    Heyman, J. 1975: Overcomplete mechanisms of plastic collapse. J. Optim. Theory Appl. 15, 27–35 Google Scholar
  18. 18.
    Jones, N. 1989: Structural Impact. Cambridge: Cambridge University Press Google Scholar
  19. 19.
    Kecman, D. 1997: An engineering approach to crashworthiness of thin-walled beams and joints in vehicle structures. Thin-Walled Struct. 28, 309–320 Google Scholar
  20. 20.
    Kleiber, M.; Antúnez, H.; Hien, T.D.; Kowalczyk, P. 1997: Parameter Sensitivity in Nonlinear Mechanics, Theory and Finite Element Computations. Chichester: John Wiley and Sons Google Scholar
  21. 21.
    Krenk, S.; Vissing-Jørgensen, C.; Thesbjerg, L. 1999: Efficient collapse techniques for framed structures. Comput. Struct. 72, 481–496 Google Scholar
  22. 22.
    Marklund, P.O.; Nilsson, L. 2001: Optimization of a car body component subjected to side impact. Struct. Multidisc. Optim. 21, 383–392 Google Scholar
  23. 23.
    Maute, K.; Schwarz, S.; Ramm, E. 1998: Adaptive topology optimization of elastoplastic structures. Struct. Optim. 15, 81–91 Google Scholar
  24. 24.
    Mayer, R.R.; Kikuchi, N.; Scott, R.A. 1996: Application of topological optimization techniques to structural crashworthiness. Int. J. Numer. Methods Eng. 39, 1383–1403 Google Scholar
  25. 25.
    Michaleris, P.; Tortorelli, D.A.; Vidal, C.A. 1994: Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int. J. Numer. Methods Eng. 37, 2471–2499 Google Scholar
  26. 26.
    Missoum, S.; Gürdal, Z.; Gu, W. 2002: Optimization of nonlinear trusses using a displacement-based approach. Struct. Multidisc. Optim. 23, 214–221 Google Scholar
  27. 27.
    Montag, U.; Krätzig, W.B.; Soric, J. 1999: Increasing solution stability for finite-element modeling of elasto-plastic shell response. Adv. Eng. Software 30, 607–619 Google Scholar
  28. 28.
    Olhoff, N. 1989: Multicriterion structural optimization via bound formulation and mathematical programming. Struct. Optim. 1, 11–17 Google Scholar
  29. 29.
    Oran, C. 1973: Tangent stiffness in plane frames. J. Struct. Div., ASCE 99, 973–985 Google Scholar
  30. 30.
    Pedersen, C.B.W. 2001: Topology optimization of 2D-frames for crashworthiness. In: Proc. 4rd WCSMO (held in Dalian, China) Google Scholar
  31. 31.
    Pedersen, C.B.W. 2002a: On Topology Design of Frame Structures for Crashworthiness. PhD thesis, Dept. Mech. Eng., Solid Mech., Tech. Univ. Denmark Google Scholar
  32. 32.
    Pedersen, C.B.W. 2002b: Topology optimization of energy absorbing frames. In: Proc. WCCM V – 5th World Congress on Computational Mechanics (held in Vienna, Austria)Google Scholar
  33. 33.
    Pedersen, C.B.W. 2003a: Topology optimization for crashworthiness of frame structures. Int. J. Crashworthiness 8, 29–39 Google Scholar
  34. 34.
    Pedersen, C.B.W. 2003b: Topology optimization of 2D-frame structures with path dependent response. Int. J. Numer. Methods Eng. 57, 1471–1501 Google Scholar
  35. 35.
    Pedersen, C.B.W.; Buhl, T.; Sigmund, O. 2001: Topology synthesis of large-displacement compliant mechanisms. Int. J. Numer. Methods Eng. 50, 2683–2706 Google Scholar
  36. 36.
    Pereira, M.S.; Ambrosio, J.A.C.; Dias, J.P. 1997: Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles. Int. J. Numer. Methods Eng. 40, 655–687 Google Scholar
  37. 37.
    Perez, J.G.; Johnson, E.R.; Boitnott, R.L. 1998: Design and test of semicircular composite frames optimized for crashworthiness. Proc. AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn. Mater. Conf. 1, 27–38 Google Scholar
  38. 38.
    Saleeb, A.F.; Wilt, T.E.; Li, W. 1998: An implicit integration scheme for generalized viscoplasticity with dynamic recovery. Comput. Mech. 21, 429–440 Google Scholar
  39. 39.
    Saleeb, A.F.; Wilt, T.E.; Li, W. 2000: Robust integration schemes for generalized viscoplasticity with internal-state variables.Comput. Struct. 74, 601–628 Google Scholar
  40. 40.
    Saxena, A.; Ananthasuresh, G.K. 2001: Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J. Mech. Des. 123, 33–42 Google Scholar
  41. 41.
    Schwarz, S.; Maute, K.; Ramm, E. 2001a: Sensitivity analysis and optimization for non-linear structural response. Eng. Comput. 18, 610–641 Google Scholar
  42. 42.
    Schwarz, S.; Maute, K.; Ramm, E. 2001b: Topology and shape optimization for elastoplastic structural response. Comput. Methods Appl. Mech. Eng. 190, 2135–2155 Google Scholar
  43. 43.
    Soric, J.; Montag, U.; Krätzig, W.B. 1997: On the increase of computational algorithm efficiency for elasto-plastic shell analysis. Eng. Comput. 14, 75–97 Google Scholar
  44. 44.
    Soto, C.A. 2001a: Optimal structural topology design for energy absorption: A heuristic approach. In: Proc. ASME Des. Eng. Tech. Conf. (held in Pittsburgh, USA) Google Scholar
  45. 45.
    Soto, C.A. 2001b: Structural topology optimization: From minimizing compliance to maximizing energy absorption. Int. J. Vehicle Des. 25, 142–163 Google Scholar
  46. 46.
    Stander, N.; Roux, W.; Pattabiraman, S.; Dhulipudi, R. 1999: Response surface approximations for design optimization problems in nonlinear dynamics. ASME, Pressure Vessels and Piping Div. 396, 275–284 Google Scholar
  47. 47.
    Svanberg, K. 1987: The method of moving asymptotes – a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 Google Scholar
  48. 48.
    Svanberg, K. 1998: The method of moving asymptotes – modelling aspects and solutions schemes. In: Bendsøe, M.P; and Pedersen, P. (eds.) Adv. Topics in Struct. Optim. DCAMM Report No. S 81, Techn. Univ. Denmark Google Scholar
  49. 49.
    Ueda, Y.; Fujikubo, M. 1992: Plastic node method considering strain-hardening effects. Comput. Methods Appl. Mech. Eng. 94, 317–337 Google Scholar
  50. 50.
    Yamazaki, K.; Han, J. 1998: Maximization of the crushing energy absorption of tubes. Struct. Optim. 16, 37–46 Google Scholar
  51. 51.
    Yang, R.; Akkerman, A.; Anderson, D.F.; Faruque, O.M.; Lei, G. 2000: Robustness optimization for vehicular crash simulations. Comput. Sci. Eng. 2, 8–13Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Solid MechanicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations