Advertisement

Non-forking w-good frames

  • Marcos Mazari-ArmidaEmail author
Article
  • 12 Downloads

Abstract

We introduce the notion of a w-good \(\lambda \)-frame which is a weakening of Shelah’s notion of a good \(\lambda \)-frame. Existence of a w-good \(\lambda \)-frame implies existence of a model of size \(\lambda ^{++}\). Tameness and amalgamation imply extension of a w-good \(\lambda \)-frame to larger models. As an application we show:

Theorem 0.1. Suppose\(2^{\lambda }< 2^{\lambda ^{+}} < 2^{\lambda ^{++}}\)and\(2^{\lambda ^{+}} > \lambda ^{++}\). If \(\mathbb {I}(\mathbf {K}, \lambda ) = \mathbb {I}(\mathbf {K}, \lambda ^{+}) = 1 \le \mathbb {I}(\mathbf {K}, \lambda ^{++}) < 2^{\lambda ^{++}}\)and\(\mathbf {K}\)is\((\lambda , \lambda ^+)\)-tame, then\(\mathbf {K}_{\lambda ^{+++}} \ne \emptyset \).

The proof presented clarifies some of the details of the main theorem of Shelah (Isr J Math 126:29–128, 2001) and avoids using the heavy set-theoretic machinery of Shelah (Classification theory for abstract elementary classes, College Publications, Charleston, 2009 [§VII]) by replacing it with tameness.

Keywords

Abstract elementary classes Good frames Tameness 

Mathematics Subject Classification

Primary 03C48 Secondary 03C45 03C55 

Notes

References

  1. 1.
    Adler, H.: A geometric introduction to forking and thorn-forking. J. Math. Logic 9(1), 1–20 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baldwin, J.: Categoricity. American Mathematical Society, Providence (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boney, W.: Tameness and extending frames. J. Math. Logic 14(2), 1450007, 27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boney, W., Grossberg, R., Kolesnikov, A., Vasey, S.: Canonical forking in AECs. Ann. Pure Appl. Logic 167(7), 590–613 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boney, W., Vasey, S.: Tameness and frames revisited. J. Symb. Logic 83(3), 995–1021 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Devlin, K.J., Shelah, S.: A weak version of \(\diamond \) which follows from \(2^{\aleph _0} < 2^{\aleph _1}\). Israel J. Math. 29(2), 239–247 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grossberg, R.: Classification theory for abstract elementary classes. In: Zhang, Y. (ed.) Logic and Algebra, vol. 302, pp. 165–204. American Mathematical Society, Providence (2002)CrossRefGoogle Scholar
  8. 8.
    Grossberg, R.: A Course in Model Theory, in Preparation, 201XGoogle Scholar
  9. 9.
    Grossberg, R., VanDieren, M.: Galois-stability for tame abstract elementary classes. J. Math. Logic 6(1), 25–49 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grossberg, R., VanDieren, M.: Shelah’s categoricity conjecture from a successor for tame abstract elementary classes. J. Symb. Logic 71(2), 553–568 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jarden, A., Shelah, S.: Non-forking frames in abstract elementary classes. Ann. Pure Appl. Logic 164, 135–191 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jarden, A., Shelah, S.: Non-forking good frames without local character, http://shelah.logic.at/files/940.pdf
  13. 13.
    Mazari-Armida, M., Vasey, S.: Universal classes near \(\aleph _1\). J. Symb. Logic 83(4), 1633–1643 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shelah, S.: Classification of Nonelementary Classes, II. Abstract Elementary Classes, Classification Theory, In: John, B., pp. 419–497 (1987)Google Scholar
  15. 15.
    Shelah, S.: Universal classes. In: Baldwin, J. (ed). Classification Theory, 264–418 (1987)Google Scholar
  16. 16.
    Shelah, S.: Categoricity of an abstract elementary class in two successive cardinals. Isr. J. Math. 126, 29–128 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shelah, S.: Classification Theory for Abstract Elementary Classes. vol. 1 & 2, Mathematical Logic and Foundations, no. 18 & 20, College Publications, Charleston (2009)Google Scholar
  18. 18.
    Vasey, S.: Building independence relations in abstract elementary classes. J. Symb. Logic 81(1), 357–383 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Vasey, S.: Forking and superstability in tame AECs. J. Symb. Logic 81(1), 357–383 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vasey, S.: Shelah’s eventual categoricity conjecture in universal classes: part I. Ann. Pure Appl. Logic 168(9), 1609–1642 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vasey, S.: Tameness from two successive good frames, accepted by the Israel Journal of Mathematics. URL:https://arxiv.org/abs/1707.09008

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations