Pseudo P-points and splitting number

  • Alan DowEmail author
  • Saharon Shelah


We construct a model in which the splitting number is large and every ultrafilter has a small subset with no pseudo-intersection.


Ultrafilter Matrix forcing Splitting number 

Mathematics Subject Classification

03E05 03E35 



  1. 1.
    Abraham, U.: Proper forcing. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 1–3, pp. 333–394. Springer, Dordrecht (2010)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, J.E., Dordal, P.: Adjoining dominating functions. J. Symb. Logic 50(1), 94–101 (1985). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blass, A., Shelah, S.: Ultrafilters with small generating sets. Isr. J. Math. 65(3), 259–271 (1989). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brendle, J.: The almost-disjointness number may have countable cofinality. Trans. Am. Math. Soc. 355(7), 2633–2649 (2003). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brendle, J., Fischer, V.: Mad families, splitting families and large continuum. J. Symb. Logic 76(1), 198–208 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brendle, J., Hrušák, M.: Countable Fréchet Boolean groups: an independence result. J. Symb. Logic 74(3), 1061–1068 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brendle, J., Shelah, S.: Ultrafilters on \(\omega \)—their ideals and their cardinal characteristics. Trans. Am. Math. Soc. 351(7), 2643–2674 (1999). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Michael Canjar, R.: On the generic existence of special ultrafilters. Proc. Am. Math. Soc. 110(1), 233–241 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Devlin, K.J.: Constructibility. Perspectives in Mathematical Logic. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kunen, K., Vaughan, J.E. (eds.): Handbook of Set-Theoretic Topology. North-Holland Publishing Co., Amsterdam (1984)zbMATHGoogle Scholar
  11. 11.
    Dow, A., Saharon, S.: On the cofinality of the splitting number. Indag. Math. (N.S.) 29(1), 382–395 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fischer, V., Steprāns, J.: The consistency of \( \mathfrak{b}=\kappa \) and \( \mathfrak{s}=\kappa ^+\). Fund. Math. 201(3), 283–293 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jech, T.: Set Theory. Springer Monographs in Mathematics, The third millennium edition, revised and expanded. Springer, Berlin (2003)Google Scholar
  14. 14.
    Shelah, S.: The character spectrum of \(\beta (\mathbb{N})\). Topol. Appl. 158(18), 2535–2555 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shelah, S.: On cardinal invariants of the continuum, Axiomatic Set Theory, Boulder, CO: Contemporary Mathematics, vol. 31. American Mathematical Society, Providence, 1984, pp. 183–207 (1983).

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.Department of Mathematics, Hill CenterRutgers UniversityPiscatawayUSA
  3. 3.Institute of MathematicsHebrew UniversityGivat Ram, JerusalemIsrael

Personalised recommendations