Advertisement

The strong tree property and the failure of SCH

Article
  • 9 Downloads

Abstract

Fontanella (J Symb Logic 79(1):193–207, 2014) showed that if \(\langle \kappa _n:n<\omega \rangle \) is an increasing sequence of supercompacts and \(\nu =\sup _n\kappa _n\), then the strong tree property holds at \(\nu ^+\). Building on a proof by Neeman (J Math Log 9:139–157, 2010), we show that the strong tree property at \(\kappa ^+\) is consistent with \(\lnot SCH_\kappa \), where \(\kappa \) is singular strong limit of countable cofinality.

Keywords

Strong tree property Singular cardinal hypothesis Large cardinals Compactness 

Mathematics Subject Classification

03E05 03E35 03E55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Cummings, J., Foreman, M.: The tree property. Adv. Math. 133(1), 1–32 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fontanella, L.: The strong tree property at successors of singular cardinals. J. Symb. Logic 79(1), 193–207 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fontanella, L.: Strong tree properties for small cardinals. J. Symb. Log. 78(1), 317–333 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Franchella, M.: On the origins of Dénes König’s infinity lemma. M. Ach. Hist. Exact Sci. 51, 3 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gitik, M., Sharon, A.: On SCH and the approachability property. Proc. Am. Math. Soc. 136(1), 311 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kunen, K., Vaughan, J.: Handbook of Set-Theoretic Topology, North Holland. See Chapter 6 on Trees and Linearly Ordered Sets by Todorcevic S (1984)Google Scholar
  7. 7.
    Neeman, I.: Aronszajn trees and the failure of the singular cardinal hypothesis. J. Math. Log. 9, 139–157 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Neeman, I.: The tree property up to \(\aleph _{\omega +1}\). J. Symb. Log. 79, 429–459 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sinapova, D.: The tree property at the first and double successors of a singular. Israel J. Math. 216(2), 799–810 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sinapova, D., Unger, S.: Combinatorics at \(\aleph _\omega \). Ann Pure Appl. Log. 165, 996–1007 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sinapova, D., Unger, S.: The tree property at \(\aleph _{\omega ^2+1}\) and \(\aleph _{\omega ^2+2}\). J. Symb. Log. 83(2), 669–682 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Specker, E.: Sur un problème de Sikorski. Colloq. Math. 2, 9–12 (1949)CrossRefzbMATHGoogle Scholar
  13. 13.
    Unger, S.: A model of cummings and foreman revisited. Ann. Pure Appl Log. 165, 1813–1831 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Weiss, C.: Subtle and ineffable tree properties. (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Illinois at ChicagoChicagoUSA

Personalised recommendations