Archive for Mathematical Logic

, Volume 58, Issue 5–6, pp 649–710 | Cite as

Non-homogeneity of quotients of Prikry forcings

  • Moti Gitik
  • Eyal KaplanEmail author


We study non-homogeneity of quotients of Prikry and tree Prikry forcings with non-normal ultrafilters over some natural distributive forcing notions.


Prikry forcing Homogeneity Distributivity Quotient forcings 

Mathematics Subject Classification

03E35 03E55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Cummings, J.: Iterated forcing and elementary embeddings. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, pp. 775–883. Springer, Dordrecht (2010)CrossRefGoogle Scholar
  2. 2.
    Gitik, M.: Prikry-type forcings. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, pp. 1351–1447. Springer, Dordrecht (2010)CrossRefGoogle Scholar
  3. 3.
    Gitik, M.: Strange ultrafilters. Arch. Math. Logic (to appear) Google Scholar
  4. 4.
    Jech, T.: Set Theory. The Third Millennium Edition. Springer Monographs in Mathematics. Springer, Berlin (2003)Google Scholar
  5. 5.
    Koepke, P., Rasch, K., Schlicht, P.: A minimal Prikry-type forcing for singularizing a measurable cardinal. J. Symb. Logic 78(1), 85100 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kunen, K.: Set Theory an Introduction to Independence Proofs, vol. 102. Elsevier, Amsterdam (2014)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations