Archive for Mathematical Logic

, Volume 58, Issue 5–6, pp 575–585 | Cite as

Reverse mathematics and colorings of hypergraphs

  • Caleb Davis
  • Jeffry HirstEmail author
  • Jake Pardo
  • Tim Ransom


Working in subsystems of second order arithmetic, we formulate several representations for hypergraphs. We then prove the equivalence of various vertex coloring theorems to \({\textsf {WKL}}_0\), \({\textsf {ACA}}_0\), and \({\varPi ^1_1 \text {-}}{\textsf {CA}}_0\).


Reverse mathematics Hypergraph Vertex Coloring 

Mathematics Subject Classification

03B30 03F35 05C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Berge, C.: Hypergraphs, North-Holland Mathematical Library, vol. 45. North-Holland Publishing Co., Amsterdam (1989). (Combinatorics of finite sets, Translated from the French)Google Scholar
  2. 2.
    Chong, C.T., Slaman, T.A., Yang, Y.: The metamathematics of stable Ramsey’s theorem for pairs. J. Am. Math. Soc. 27(3), 863–892 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Davis, C., Hirschfeldt, D., Hirst, J., Pardo, J., Pauly, A., Yokoyama, K.: Combinatorial principles equivalent to weak induction (2018) (in preparation)Google Scholar
  4. 4.
    Dorais, F.G., Hirst, J.L., Shafer, P.: Comparing the strength of diagonally nonrecursive functions in the absence of \({\varSigma }_ {2}^{0}\) induction. J. Symb. Log. 80(4), 1211–1235 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hirst, J.L.: Marriage theorems and reverse mathematics. In: Sieg, W. (ed.) Logic and Computation (Pittsburgh, PA, 1987). Contemporary Mathematics, vol. 106, pp. 181–196. American Mathematical Society, Providence (1990). CrossRefGoogle Scholar
  6. 6.
    Hirst, J.L.: Disguising induction: proofs of the pigeonhole principle for trees. In: Tennant, N. (ed.) Foundational Adventures, Tributes, vol. 22, pp. 113–123. College Publications, London (2014)Google Scholar
  7. 7.
    Kreuzer, A.P., Yokoyama, K.: On principles between \({\varSigma }_{1}\)- and \({\varSigma }_{2}\)-induction, and monotone enumerations. J. Math. Log. 16(1), 1650004 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd edn. Cambridge University Press, Cambridge (2009). CrossRefzbMATHGoogle Scholar
  9. 9.
    Smorodinsky, S.: Conflict-free coloring and its applications. In: Bárány, I., Böröczky, K.J., Táth, G.F., Pach, J. (eds.) Geometry—Intuitive, Discrete, and Convex. Bolyai Society Mathematical Studies, vol. 24, pp. 331–389. János Bolyai Mathematical Society, Budapest (2013). Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Caleb Davis
    • 1
  • Jeffry Hirst
    • 1
    Email author
  • Jake Pardo
    • 1
  • Tim Ransom
    • 2
  1. 1.Department of Mathematical SciencesAppalachian State UniversityBooneUSA
  2. 2.Computer Science DivisionClemson UniversityClemsonUSA

Personalised recommendations