Advertisement

Archive for Mathematical Logic

, Volume 58, Issue 3–4, pp 443–456 | Cite as

A continuity principle equivalent to the monotone \(\Pi ^{0}_{1}\) fan theorem

  • Tatsuji KawaiEmail author
Article
  • 17 Downloads

Abstract

The strong continuity principle reads “every pointwise continuous function from a complete separable metric space to a metric space is uniformly continuous near each compact image.” We show that this principle is equivalent to the fan theorem for monotone \(\varPi ^{0}_{1}\) bars. We work in the context of constructive reverse mathematics.

Keywords

Constructive reverse mathematics Fan theorem Strongly continuous function Complete separable metric space 

Mathematics Subject Classification

03F60 03F55 03B30 26E40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I am grateful to Josef Berger and Makoto Fujiwara for useful discussions. I also thank Hajime Ishihara and Takako Nemoto for helpful comments. This work was carried out while the author was INdAM-COFUND-2012 fellow of Istituto Nazionale di Alta Matematica “F. Severi”(INdAM).

References

  1. 1.
    Aczel, P., Rathjen, M.: Notes on constructive set theory. Tech. Rep. 40, Institut Mittag-Leffler (2000/2001)Google Scholar
  2. 2.
    Berger, J.: The fan theorem and uniform continuity. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) New Computational Paradigms, CiE 2005. Lecture Notes in Computer Science, vol. 3526, pp. 18–22. Springer, Berlin (2005).  https://doi.org/10.1007/11494645_3
  3. 3.
    Berger, J.: The logical strength of the uniform continuity theorem. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) Logical Approaches to Computational Barriers, CiE 2006. Lecture Notes in Computer Science, vol. 3988, pp. 35–39. Springer, Berlin (2006).  https://doi.org/10.1007/11780342_4
  4. 4.
    Berger, J.: A separation result for varieties of Brouwer’s fan theorem. In: Proceedings of the 10th Asian Logic Conference, pp. 85–92. World Scientific Publishing (2010).  https://doi.org/10.1142/9789814293020_0003
  5. 5.
    Berger, J., Bridges, D.: A bizarre property equivalent to the \(\Pi ^0_1\)-fan theorem. Log. J. IGPL 14(6), 867–871 (2006).  https://doi.org/10.1093/jigpal/jzl026 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  7. 7.
    Bridges, D.: Constructive Functional Analysis. Research Notes in Mathematics, vol. 28. Pitman, London (1979)zbMATHGoogle Scholar
  8. 8.
    Bridges, D., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext. Springer, New York (2006).  https://doi.org/10.1007/978-0-387-38147-3 zbMATHGoogle Scholar
  9. 9.
    Diener, H., Loeb, I.: Sequences of real functions on \([0,1]\) in constructive reverse mathematics. Ann. Pure Appl. Logic 157(1), 50–61 (2009).  https://doi.org/10.1016/j.apal.2008.09.018 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ishihara, H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics, no. 48 in Oxford Logic Guides, pp. 245–267. Oxford University Press, Oxford (2005).  https://doi.org/10.1093/acprof:oso/9780198566519.003.0016 CrossRefGoogle Scholar
  11. 11.
    Ishihara, H.: Reverse mathematics in Bishop’s constructive mathematics. Philos. Sci. Cah. Spéc. 6, 43–56 (2006).  https://doi.org/10.4000/philosophiascientiae.406 Google Scholar
  12. 12.
    Lubarsky, R.S., Diener, H.: Separating the fan theorem and its weakenings. In: Artemov, S., Nerode, A. (eds.) Logical Foundations of Computer Science, LFCS 2013. Lecture Notes in Computer Science, vol. 7734, pp. 280–295. Springer, Berlin, (2013).  https://doi.org/10.1007/978-3-642-35722-0_20
  13. 13.
    Schuster, P.: What is continuity, constructively? J. UCS 11(12), 2076–2085 (2005).  https://doi.org/10.3217/jucs-011-12-2076 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction. Volume I. Studies in Logic and the Foundations of Mathematics, vol. 121. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar
  15. 15.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction. Volume II. Studies in Logic and the Foundations of Mathematics, vol. 123. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Japan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations