Archive for Mathematical Logic

, Volume 58, Issue 3–4, pp 413–425 | Cite as

Dickson’s lemma and weak Ramsey theory

  • Yasuhiko OmataEmail author
  • Florian Pelupessy


We explore the connections between Dickson’s lemma and weak Ramsey theory. We show that a weak version of the Paris–Harrington principle for pairs in c colors and miniaturized Dickson’s lemma for c-tuples are equivalent over \(\mathsf {RCA}_0^{*}\). Furthermore, we look at a cascade of consequences for several variants of weak Ramsey’s theorem.


Reverse mathematics Ramsey theory Dickson’s lemma 

Mathematics Subject Classification

03B30 05C55 03F30 03H15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author thanks his supervisor Professor Kazuyuki Tanaka for helpful discussions and his support. We also thank the anonymous referee for valuable comments.


  1. 1.
    Carlucci, L., Lee, G., Weiermann, A.: Sharp thresholds for hypergraph regressive Ramsey numbers. J. Comb. Theory Ser. A 118(2), 558–585 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Erdös, P., Mills, G.: Some bounds for the Ramsey–Paris–Harrington numbers. J. Comb. Theory Ser. A 30(1), 53–70 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s lemma. In: 2011 IEEE 26th Annual Symposium on Logic in Computer Science, pp. 269–278 (2011)Google Scholar
  4. 4.
    Friedman, H. M.: Adjacent Ramsey Theory. Unpublished manuscript. Accessed 4 Nov 2017 (2010)
  5. 5.
    Friedman, H., Pelupessy, F.: Independence of Ramsey theorem variants using \(\varepsilon_0\). Proc. Am. Math. Soc. 144, 853–860 (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gordan, P.: Neuer Beweis des Hilbertschen Satzes über homogene Funktionen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1899, 240–242 (1899)zbMATHGoogle Scholar
  7. 7.
    Gordeev, L., Weiermann, A.: Phase transitions of iterated Higman-style well-partial-orderings. Arch. Math. Log. 51(1–2), 127–161 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic, Perspectives in Mathematical Logic. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ketonen, J., Solovay, R.: Rapidly growing Ramsey functions. Ann. Math. 113(2), 267–314 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kreuzer, A.P., Yokoyama, K.: On principles between \(\Sigma_{1}\)- and \(\Sigma_{2}\)-induction, and monotone enumerations. J. Math. Log. 16(1), 1650004 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Löb, M.H., Wainer, S.S.: Hierarchies of number-theoretic functions. I. Archiv für mathematische Logik und Grundlagenforschung 13(1–2), 39–51 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Simpson, S.G.: Ordinal numbers and the Hilbert basis theorem. J. Symb. Log. 53(3), 961–974 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  14. 14.
    Simpson, S.G., Smith, R.L.: Factorization of polynomials and \(\Sigma ^{0}_{1}\) induction. Ann. Pure Appl. Log. 31, 289–306 (1986)CrossRefGoogle Scholar
  15. 15.
    Steila, S., Yokoyama, K.: Reverse mathematical bounds for the termination theorem. Ann. Pure Appl. Log. 167(12), 1213–1241 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Weiermann, A., Van Hoof, W.: Sharp phase transition thresholds for the Paris Harrington Ramsey numbers for a fixed dimension. Proc. Am. Math. Soc. 140(8), 2913–2927 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations