Archive for Mathematical Logic

, Volume 58, Issue 3–4, pp 325–338 | Cite as

On the non-existence of mad families

  • Haim HorowitzEmail author
  • Saharon Shelah


We show that the non-existence of mad families is equiconsistent with \(\textit{ZFC}\), answering an old question of Mathias. We also consider the above result in the general context of maximal independent sets in Borel graphs, and we construct a Borel graph G such that \(\textit{ZF}+\textit{DC}+\) “there is no maximal independent set in G” is equiconsistent with \(\textit{ZFC}+\) “there exists an inaccessible cardinal”.


Forcing Mad families Amalgamation Borel graphs Inaccessible cardinals 

Mathematics Subject Classification

03E35 03E15 03E25 03E55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brendle, J.: Some problems concerning mad families, note. (2013). Accessed 18 June 2018
  2. 2.
    Horowitz, H., Shelah, S.: A Borel maximal eventually different family. arXiv:1605.07123
  3. 3.
    Kanamori, A.: Mathias and set theory. Math. Log. Quart. 159, 1–17 (2016)zbMATHGoogle Scholar
  4. 4.
    Kechris, A.S., Marks, A.: Descriptive graph combinatorics. (2015). Accessed 18 June 2018
  5. 5.
    Kechris, A.S., Solecki, S., Todorcevic, S.: Borel chromatic numbers. Adv. Math. 141, 1–44 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mathias, A.R.D.: Happy families (MR 0491197). Ann. Math. Log. 12(1), 59–111 (1977)CrossRefGoogle Scholar
  7. 7.
    Miller, A.W.: Infinite combinatorics and definability. Ann. Pure Appl. Log. 41(2), 179–203 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Roslanowski, A., Shelah, S.: Sweet and sour and other flavours of ccc forcing notions. Arch. Math. Log. 43, 583–663 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shelah, Saharon: Can you take Solovay’s inaccessible away? Israel J. Math. 48, 1–47 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Solovay, Robert M.: A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math. 92, 1–56 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Toernquist, A.: Definability and almost disjoint families. Adv. Math. 330, 61–73 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Einstein Institute of Mathematics, Edmond J. Safra CampusThe Hebrew University of JerusalemGivat Ram, JerusalemIsrael
  2. 2.Department of Mathematics, Hill Center - Busch CampusRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations