Archive for Mathematical Logic

, Volume 58, Issue 3–4, pp 267–274 | Cite as

Some remarks on inp-minimal and finite burden groups

  • Jan Dobrowolski
  • John GoodrickEmail author


We prove that any left-ordered inp-minimal group is abelian and we provide an example of a non-abelian left-ordered group of dp-rank 2. Furthermore, we establish a necessary condition for a group to have finite burden involving normalizers of definable sets, reminiscent of other chain conditions for stable groups.


dp-minimal Left-ordered groups Finite burden groups 

Mathematics Subject Classification

03C45 03C60 06F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, H.: Strong theories, burden, and weight, preprint (2007). arXiv:1507.0391
  2. 2.
    Chernikov, A., Kaplan, I., Simon, P.: Groups and fields with NTP2. Proc. Am. Math. Soc. 143, 395–406 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gurevich, Y., Schmitt, P.: The theory of ordered abelian groups does not have the independence property. Trans. Am. Math. Soc. 284, 171–182 (1984). arXiv:1507.0391 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Halevi, Y., Hasson, A.: Strongly dependent ordered abelian groups and Henselian fields, preprint (2017). arXiv:1706.03376
  5. 5.
    Jahnke, F., Simon, P., Walsberg, E.: Dp-minimal valued fields (2015). arXiv:1507.0391
  6. 6.
    Johnson, W.: On dp-minimal fields (2015). arXiv:1507.0274
  7. 7.
    Kaplan, I., Onshuus, A., Usvyatsov, A.: Additivity of the dp-rank. Trans. Am. Math. Soc. 365(11), 5783–5804 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lam, T.Y.: A First Course in Noncommutative Rings. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  9. 9.
    Levi, E., Kaplan, I., Simon, P.: Some remarks on dp-minimal groups (2016). arXiv:1605.07867
  10. 10.
    Onshuus, A., Vicaria, M.: Definable groups in models of Presburger Arithmetic and \(G^{00}\), preprint (2016)Google Scholar
  11. 11.
    Onshuus, A., Usvyatsov, A.: On dp-minimality, strong dependence, and weight. J. Symb. Log. 76(3), 737–758 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shelah, S.: Dependent first-order theories, continued. Isr. J. Math. 173(1), 1 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Simon, P.: On dp-minimal ordered structures. J. Symb. Log. 76(2), 448–460 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Usvyatsov, A.: On generically stable types in dependent theories. J. Symb. Log. 74(1), 216–250 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of LeedsLeedsUK
  2. 2.Departamento de MatemáticasUniversidad de los AndesBogotáColombia

Personalised recommendations