Archive for Mathematical Logic

, Volume 58, Issue 3–4, pp 427–442 | Cite as

Diamond, scales and GCH down to \(\aleph _{\omega ^2}\)



Gitik and Rinot (Trans Am Math Soc 364(4):1771–1795, 2012) proved assuming the existence of a supercompact that it is consistent to have a strong limit cardinal \(\kappa \) of countable cofinality such that \(2^\kappa =\kappa ^+\), there is a very good scale at \(\kappa \), and \(\diamond \) fails along some reflecting stationary subset of \(\kappa ^+\cap \text {cof}(\omega )\). In this paper, we force over Gitik and Rinot’s model but with a modification of Gitik–Sharon (Proc Am Math Soc 136(1):311, 2008) diagonal Prikry forcing to get this result for \(\kappa =\aleph _{\omega ^2}\).


Diamond Scales Stationary Reflection Supercompact 

Mathematics Subject Classification

03E05 03E35 03E55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cummings, J., Foreman, M.: Diagonal prikry extensions. J. Symb. Logic 75, 1383–1402 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cummings, J., Foreman, M., Magidor, M.: Squares, scales and stationary reflection. J. Math. Log. 1, 3598 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gitik, M., Rinot, A.: The failure of diamond on a reflecting stationary set. Trans. Am. Math. Soc. 364(4), 1771–1795 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gitik, M., Sharon, A.: On SCH and the approachability property. Proc. Am. Math. Soc. 136(1), 311 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Laver, R.: Making the supercompactness of \(\kappa \) indestructible under \(\kappa \)-directed closed forcing. Israel J. Math. 29, 385–388 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rinot, A.: A relative of the approachability ideal, diamond and non-saturation. J. Symb. Logic 75(3), 1035–1065 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Shelah, S.: Cardinal Arithmetic. Oxford Logic Guides, 29. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  8. 8.
    Shelah, S.: Diamonds, uniformization. J. Symb. Logic 49(4), 1022–1033 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zeman, M.: Diamond, GCH and weak square. Proc. Am. Math. Soc. 138(5), 1853–1859 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Illinois at ChicagoChicagoUSA

Personalised recommendations