Advertisement

Archive for Mathematical Logic

, Volume 58, Issue 1–2, pp 203–217 | Cite as

The binary expansion and the intermediate value theorem in constructive reverse mathematics

  • Josef Berger
  • Hajime IshiharaEmail author
  • Takayuki Kihara
  • Takako Nemoto
Article
  • 35 Downloads

Abstract

We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval (\(\mathrm {BE}\)) is equivalent to weak König lemma (\(\mathrm {WKL}\)) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to \(\mathrm {WKL}\) for convex trees, in the framework of constructive reverse mathematics.

Keywords

The binary expansion The intermediate value theorem The weak König lemma Convex tree Constructive reverse mathematics 

Mathematics Subject Classification

03F65 03B30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, J., Ishihara, H.: Brouwer’s fan theorem and unique existence in constructive analysis. MLQ Math. Log. Q. 51, 360–364 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berger, J., Ishihara, H., Schuster, P.: The weak König lemma, Brouwer’s fan theorem, De Morgan’s law, and dependent choice. Rep. Math. Logic 47, 63–86 (2012)zbMATHGoogle Scholar
  3. 3.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  4. 4.
    Bishop, E., Bridges, D.: Constructive Analysis. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bridges, D., Richman, F.: Varieties of Constructive Mathematics, London Mathematical Society Lecture Note, vol. 97. Cambridge University Press, London (1987)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bridges, D., Vîţă, L.: Techniques of Constructive Analysis. Springer, New York (2006)zbMATHGoogle Scholar
  7. 7.
    Ishihara, H.: An omniscience principle, the König lemma and the Hahn–Banach theorem. Z. Math. Logik Grundlag. Math. 36, 237–240 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ishihara, H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Analysis and Topology, Oxford Logic Guides, vol. 48, pp. 245–267. Oxford University Press, Oxford (2005)CrossRefGoogle Scholar
  9. 9.
    Ishihara, H.: Weak König’s lemma implies Brouwer’s fan theorem: a direct proof. Notre Dame J. Form. Log. 47, 249–252 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ishihara, H.: Relativizing real numbers to a universe. In: Lindström, S., Palmgren, E., Segerberg, K., Stoltenberg-Hansen, V. (eds.) Logicism, Intuitionism, and Formalism—What has Become of Them?, pp. 189–207. Springer, Berlin (2009)CrossRefGoogle Scholar
  11. 11.
    Loeb, I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 51–66 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mostowski, A.: On computable sequences. Fundam. Math. 44, 37–51 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  14. 14.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tanaka, K.: Reverse mathematics and subsystems of second-order arithmetic. Sugaku Expositions 5, 213–234 (1992)MathSciNetGoogle Scholar
  16. 16.
    Troelstra, A.S.: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Springer, Berlin (1973)CrossRefzbMATHGoogle Scholar
  17. 17.
    Troelstra, A.S.: Aspects of constructive mathematics. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 973–1052. North-Holland, Amsterdam (1977)CrossRefGoogle Scholar
  18. 18.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. I, II. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar
  19. 19.
    Veldman, W.: Brouwer’s fan theorem as an axiom and as a contrast to Kleene’s alternative. Arch. Math. Logic 53, 621–693 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Josef Berger
    • 1
  • Hajime Ishihara
    • 2
    Email author
  • Takayuki Kihara
    • 3
  • Takako Nemoto
    • 2
  1. 1.Mathematisches Institut der Universität MünchenMunichGermany
  2. 2.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  3. 3.Department of Mathematical Informatics, Graduate School of InformaticsNagoya UniversityNagoyaJapan

Personalised recommendations