Advertisement

Archive for Mathematical Logic

, Volume 58, Issue 1–2, pp 119–136 | Cite as

Sequent calculus for classical logic probabilized

  • Marija BoričićEmail author
Article
  • 41 Downloads

Abstract

Gentzen’s approach to deductive systems, and Carnap’s and Popper’s treatment of probability in logic were two fruitful ideas that appeared in logic of the mid-twentieth century. By combining these two concepts, the notion of sentence probability, and the deduction relation formalized in the sequent calculus, we introduce the notion of ’probabilized sequent’ \(\Gamma \vdash _a^b\Delta \) with the intended meaning that “the probability of truthfulness of \(\Gamma \vdash \Delta \) belongs to the interval [ab]”. This method makes it possible to define a system of derivations based on ’axioms’ of the form \(\Gamma _i\vdash _{a_i}^{b_i}\Delta _i\), obtained as a result of empirical research, and then infer conclusions of the form \(\Gamma \vdash _a^b\Delta \). We discuss the consistency, define the models, and prove the soundness and completeness for the defined probabilized sequent calculus.

Keywords

Consistency Sequent calculus Probability Soundness Completeness 

Mathematics Subject Classification

03B48 03B50 03B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, E.: The logic of conditionals. Inquiry 8, 166–197 (1965)CrossRefGoogle Scholar
  2. 2.
    Adams, E.: The Logic of Conditionals. Reidel, Dordrecht (1975)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boole, G.: The Laws of Thought. Prometheus Books, New York (2003). (First edition 1854)zbMATHGoogle Scholar
  4. 4.
    Boričić, M.: Hypothetical syllogism rule probabilized. Bull. Symb. Log 20(3), 401–402. Abstract, Logic Colloquium 2012, University of Manchester, 12th–18th July 2012 (2014)Google Scholar
  5. 5.
    Boričić, M.: Models for the probabilistic sequent calculus. Bull. Symb. Log. 21 (1), 60. Abstract, Logic Colloquium 2014, European Summer Meeting of Association for Symbolic Logic, Vienna University of Technology 14th–19th July (2015)Google Scholar
  6. 6.
    Boričić, M.: Inference rules for probability logic. Publ. l’Instit. Math. 100(114), 77–86 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boričić, M.: A Suppes-style sequent calculus for probability logic. J. Log. Comput. 27(4), 1157–1168 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Carnap, R.: Logical Foundations of Probability. University of Chicago Press, Chicago (1950)zbMATHGoogle Scholar
  9. 9.
    Djordjević, R., Rašković, M., Ognjanović, Z.: Completeness theorem for propositional probabilistic models whose measures have only finite ranges. Arch. Math. Log. 43(4), 557–563 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87, 78–128 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Frisch, A.M., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69, 93–122 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, 176–210, 405–431 (or G. Gentzen, Collected Papers, (ed. M. E. Szabo), North–Holland, Amsterdam, 1969) (1934–35)Google Scholar
  13. 13.
    Hailperin, T.: Best possible inequalities for the probability logical function of events. Am. Math. Mon. 72, 343–359 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hailperin, T.: Probability logic. Notre Dame J. Form. Log. 25, 198–212 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Horn, A.: On sentences which are true of direct unions of algebras. J. Symb. Log. 16, 14–21 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ikodinović, N.: Craig interpolation theorem for classical propositional logic with some probability operators. Publ. l’Instit. Math. 69(83), 27–33 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Keynes, J.M.: A Treatise on Probability. Cambridge University Press, Cambridge (2013). (First edition 1921)zbMATHGoogle Scholar
  18. 18.
    Leblanc, H., van Fraassen, B.C.: On Carnap and Popper probability functions. J. Symb. Log. 44, 369–373 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Leblanc, H.: Popper’s, axiomatization of absolute probability. Pac. Philos. Q. 69(1982), 133–145 (1955)Google Scholar
  20. 20.
    Leblanc, H.: Probability functions and their assumption sets—the singulary case. J. Philos. Log. 12, 382–402 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lewis, D.: Probabilities of conditionals and conditional probabilities. Philos. Rev. 85, 297–315 (1976)CrossRefGoogle Scholar
  22. 22.
    Lewis, D.: Probabilities of conditionals and conditional probabilities II. Philos. Rev. 95, 581–589 (1986)CrossRefGoogle Scholar
  23. 23.
    Marković, Z., Ognjanović, Z., Rašković, M.: A probabilistic extension of intuitionistic logic. Math. Log. Q. 49(4), 415–424 (2003a)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Marković, Z., Ognjanović, Z., Rašković, M.: An intuitionistic logic with probabilistic operators. Publ. l’Instit. Math. 73(87), 31–38 (2003b)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nilsson, N.J.: Probabilistic logic revisited. Artif. Intell. 59, 39–42 (1993)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ognjanović, Z., Rašković, M.: A logic with higher order probabilities. Publ. l’Instit. Math. 60(74), 1–4 (1996)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. In: Z. Ognjanović (ed.) Logic in Computer Science. Zbornik radova 12(20), Mathematical Institute SANU, Belgrade, pp. 35–111 (2009)Google Scholar
  29. 29.
    Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics. Springer, Berlin (2016)CrossRefzbMATHGoogle Scholar
  30. 30.
    Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Almquist and Wiksell, Stockholm (1965)zbMATHGoogle Scholar
  31. 31.
    Popper, K. R.: Two autonomous axiom systems for the calculus of probabilities. Br. J. Philos. Sci. 6, 51–57, 176, 351 (1955)Google Scholar
  32. 32.
    Rašković, M.: Classical logic with some probability operators. Publ. l’Instit. Math. 53(67), 1–3 (1993)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Suppes, P.: Probabilistic inference and the concept of total evidence. In: Hintikka, J., Suppes, P. (eds.) Aspects of Inductive Inference, pp. 49–55. North-Holland, Amsterdam (1966)CrossRefGoogle Scholar
  34. 34.
    Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1975)zbMATHGoogle Scholar
  35. 35.
    Szabo, M.E.: Algebra of Proofs. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  36. 36.
    Venn, J.: The Logic of Chance. Chelsea Publishing Company, New York (1962). (First edition 1866.)zbMATHGoogle Scholar
  37. 37.
    Venn, J.: The Principles of Inductive Logic. Chelsea Publishing Company, New York (1973). (First edition 1889.)zbMATHGoogle Scholar
  38. 38.
    Wagner, C.G.: Modus tollens probabilized. Br. J. Philos. Sci. 54(4), 747–753 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Organizational SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations