Archive for Mathematical Logic

, Volume 57, Issue 7–8, pp 853–859 | Cite as

A model of \(\mathsf {ZFA}+ \mathsf {PAC}\) with no outer model of \(\mathsf {ZFAC}\) with the same pure part

  • Paul LarsonEmail author
  • Saharon Shelah


We produce a model of \(\mathsf {ZFA}+ \mathsf {PAC}\) such that no outer model of \(\mathsf {ZFAC}\) has the same pure sets, answering a question asked privately by Eric Hall.


Set theory with atom Axiom of choice Forcing 

Mathematics Subject Classification

Primary 03E35 Secondary 03E25 03C75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, N.L.: Model theoretic proof of a theorem of Hjorth. unpublished noteGoogle Scholar
  2. 2.
    Gao, Su: On automorphism groups of countable structures. J. Symb. Log. 63(3), 891–896 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Halbeisen, L.J.: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, London (2012). (With a gentle introduction to forcing)CrossRefGoogle Scholar
  4. 4.
    Hjorth, G.: Knight’s model, its automorphism group, and characterizing the uncountable cardinals. J. Math. Logic 2(1), 113–144 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993)Google Scholar
  6. 6.
    Jech, T.: Set Theory. Springer Monographs in Mathematics, 3rd edn. Springer, Berlin (2003)Google Scholar
  7. 7.
    Jech, T.J.: The axiom of choice. North-Holland Publishing Co., Amsterdam-London; Amercan Elsevier Publishing Co., Inc., New York. Studies in Logic and the Foundations of Mathematics, Vol. 75 (1973)Google Scholar
  8. 8.
    Laskowski, M.C., Shelah, S.: On the existence of atomic models. J. Symb. Log. 58(4), 1189–1194 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMiami UniversityOxfordUSA
  2. 2.Department of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations