Advertisement

Archive for Mathematical Logic

, Volume 57, Issue 7–8, pp 861–871 | Cite as

Generic variations and NTP\(_1\)

  • Jan DobrowolskiEmail author
Open Access
Article
  • 191 Downloads

Abstract

We prove a preservation theorem for NTP\(_1\) in the context of the generic variations construction. We also prove that NTP\(_1\) is preserved under adding to a geometric theory a generic predicate.

Keywords

Tree property of the first kind Generic variations Parametrized Fraïssé class 

Mathematics Subject Classification

03C45 

References

  1. 1.
    Baudisch, A.: Generic variations of models of T. J. Symb. Log. 67, 1025–1038 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chatzidakis, Z., Pillay, A.: Generic structures and simple theories. Ann. Pure Appl. Log. 95, 71–92 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chernikov, A.: Theories without the tree property of the second kind. Ann. Pure Appl. Log. 165, 695–723 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chernikov, A., Ramsey, N.: On model-theoretic tree properties. J. Math. Log.  https://doi.org/10.1142/S0219061316500094
  5. 5.
    Dobrowolski, J., Kim, H.: A preservation theorem for theories without the tree property of the first kind. Math. Log. Q 63(6), 536–543Google Scholar
  6. 6.
    Dzamonja, M., Shelah, S.: On \(\triangleleft ^*\)-maximality. Ann. Pure Appl. Log. 125, 119–158 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Granger, N.: Stability, simplicity, and the model theory of bilinear forms. PhD thesis, University of Manchester (1999)Google Scholar
  8. 8.
    Hodges, W.: Model Theory, vol. 42. Cambridge Univerity Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Winkler, P.: Model-completeness and Skolem expansions. In: Model Theory and Algebra, A Memorial Tribute to Abraham Robinson, LNM, vol. 498, Springer, Berlin, pp. 408–463 (1975)Google Scholar
  10. 10.
    Takeuchi, K., Tsuboi, A.: On the existence of indiscernible trees. Ann. Pure Appl. Log. 163, 1891–1902 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsYonsei UniversitySeoulKorea

Personalised recommendations