Advertisement

Archive for Mathematical Logic

, Volume 57, Issue 5–6, pp 713–725 | Cite as

On a class of maximality principles

  • Daisuke Ikegami
  • Nam TrangEmail author
Article

Abstract

We study various classes of maximality principles, \(\mathrm {MP}(\kappa ,\Gamma )\), introduced by Hamkins (J Symb Log 68(2):527–550, 2003), where \(\Gamma \) defines a class of forcing posets and \(\kappa \) is an infinite cardinal. We explore the consistency strength and the relationship of \(\textsf {MP}(\kappa ,\Gamma )\) with various forcing axioms when \(\kappa \in \{\omega ,\omega _1\}\). In particular, we give a characterization of bounded forcing axioms for a class of forcings \(\Gamma \) in terms of maximality principles MP\((\omega _1,\Gamma )\) for \(\Sigma _1\) formulas. A significant part of the paper is devoted to studying the principle MP\((\kappa ,\Gamma )\) where \(\kappa \in \{\omega ,\omega _1\}\) and \(\Gamma \) defines the class of stationary set preserving forcings. We show that MP\((\kappa ,\Gamma )\) has high consistency strength; on the other hand, if \(\Gamma \) defines the class of proper forcings or semi-proper forcings, then by Hamkins (2003), MP\((\kappa ,\Gamma )\) is consistent relative to \(V=L\).

Keywords

Maximality principles Forcing axioms Inner models Large cardinals 

Mathematics Subject Classification

Primary 03E47 Secondary 03E55 03E45 03E57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audrito, G., Viale, M.: Absoluteness via Resurrection. arXiv:1404.2111
  2. 2.
    Bagaria, J.: Bounded forcing axioms as principles of generic absoluteness. Arch. Math. Log. 39(6), 393–401 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Claverie, B., Schindler, R.: Woodin’s axiom (*), bounded forcing axioms, and precipitous ideals on \(\omega _1\). J. Symb. Log. 77(2), 475–498 (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cummings, J.: Iterated forcing and elementary embeddings. In: Handbook of Set Theory, pp. 775–883 (2010)Google Scholar
  5. 5.
    Fuchs, G., Hamkins, J.D., Reitz, J.: Set-theoretic geology. Ann. Pure Appl. Log. 166(4), 464–501 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hamkins, J.D., Woodin, W.H.: The necessary maximality principle for ccc forcing is equiconsistent with a weakly compact cardinal. Math. Log. Q. 51(5), 493–498 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hamkins, J.D.: A simple maximality principle. J. Symb. Log. 68(2), 527–550 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hamkins, J.D., Johnstone, T.A.: Resurrection axioms and uplifting cardinals. Arch. Math. Log. 53(3–4), 463–485 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Larson, P.B.: Martin’s maximum and definability in \(H(\aleph _2)\). Ann. Pure Appl. Log. 156(1), 110–122 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Moore, J.T.: Set mapping reflection. J. Math. Log. 5(01), 87–97 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Schindler, R., Steel, J.R.: The Core Model Induction. http://math.berkeley.edu/~steel
  12. 12.
    Schindler, R.: Woodin’s Axiom (*), or Martin’s Maximum, or Both. http://wwwmath.uni-muenster.de/u/rds
  13. 13.
    Schindler, R.: Coding in K by reasonable forcing. Trans. Am. Math. Soc. 353, 479–489 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Schindler, R.: Semi-proper forcing, remarkable cardinals, and bounded Martin’s maximum. Math. Log. Q. 50(6), 527–532 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shelah, S.: Proper and Improper Forcing. Perspectives in Mathematical Logic, 2nd edn. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Todorcevic, S.: Generic absoluteness and the continuum. Math. Res. Lett. 9(4), 465–472 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tsaprounis, K.: On resurrection axioms. J. Symb. Log. 80(2), 587–608 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Usuba, T.: The downward directed grounds hypothesis and very large cardinals (submitted for publication)Google Scholar
  19. 19.
    Viale, M.: Category forcings, \( {MM}^{+++}\), and generic absoluteness for the theory of strong forcing axioms. J. Am. Math. Soc. 29(3), 675–728 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Viale, M.: Martin’s maximum revisited. Arch. Math. Log. 55(1–2), 295–317 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Woodin, W.H.: The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, Volume 1 de Gruyter Series in Logic and Its Applications. Walter de Gruyter & Co., Berlin (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics, School of EngineeringTokyo Denki UniversityTokyoJapan
  2. 2.Department of MathematicsUC IrvineIrvineUSA

Personalised recommendations