Archive for Mathematical Logic

, Volume 57, Issue 5–6, pp 665–686 | Cite as

On the minimal cover property and certain notions of finite

  • Eleftherios TachtsisEmail author


In set theory without the axiom of choice, we investigate the deductive strength of the principle “every topological space with the minimal cover property is compact”, and its relationship with certain notions of finite as well as with properties of linearly ordered sets and partially ordered sets.


Axiom of choice Weak axioms of choice Minimal cover property Compact space Notions of finite Partially ordered set Linearly ordered set Cofinal well-founded subset of a partially ordered set Chain and antichain in a partially ordered set Fraenkel–Mostowski (FM) permutation models of ZFA + ¬AC Pincus’ transfer theorems 

Mathematics Subject Classification

Primary 03E25 Secondary 03E35 06A05 06A06 06A07 54D30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arens, R., Dugundji, J.: Remark on the concept of compactness. Port. Math. 9, 141–143 (1950)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Blass, A.: Ramsey’s theorem in the hierarchy of choice principles. J. Symb. Log. 42, 387–390 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dedekind, R.: Stetigkeit und irrationale Zahlen. Vieweg, Braunschweig (1872)zbMATHGoogle Scholar
  4. 4.
    De la Cruz, O.: Finiteness and choice. Fund. Math. 173, 57–76 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Herrlich, H., Howard, P., Tachtsis, E.: On a certain notion of finite and a finiteness class in set theory without choice. Bull. Pol. Acad. Sci. Math. 63(2), 89–112 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Höft, H., Howard, P.: Well ordered subsets of linearly ordered sets. Notre Dame J. Form. Log. 35, 413–425 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Howard, P.E., Yorke, M.F.: Definitions of finite. Fund. Math. 133, 169–177 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Howard, P., Rubin, J.E.: Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, vol. 59. American Mathematical Society, Providence (1998); Consequences of the Axiom of Choice Project Homepage.
  9. 9.
    Howard, P., Saveliev, D.I., Tachtsis, E.: On the set-theoretic strength of the existence of disjoint cofinal sets in posets without maximal elements. Math. Log. Q. 62(3), 155–176 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Howard, P., Saveliev, D.I., Tachtsis, E.: On the existence of cofinal well-founded subsets of posets without \({\bf AC}\)  (article in preparation) Google Scholar
  11. 11.
    Howard, P., Solski, J.: The strength of the \(\Delta \)-system lemma. Notre Dame J. Form. Log. 34(1), 100–106 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Howard, P., Tachtsis, E.: On the minimal cover property in \({\mathbf{ZF}}\). Topol. Appl. 173, 94–106 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jech, T.J.: The Axiom of Choice, Studies in Logic and the Foundations of Mathematics, vol. 75. North-Holland, Amsterdam (1973)Google Scholar
  14. 14.
    Lévy, A.: The independence of various definitions of finiteness. Fund. Math. 46, 1–13 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lévy, A.: Axioms of multiple choice. Fund. Math. 50, 475–483 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pincus, D.: Zermelo–Fraenkel consistency results by Fraenkel–Mostowski methods. J. Symb. Log. 37, 721–743 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pincus, D.: Adding dependent choice. Ann. Math. Log. 11, 105–145 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Spišiak, L.: Dependences between definitions of finiteness. II. Czechoslov. Math. J. 43, 391–407 (1993)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Spišiak, L., Vojtáš, P.: Dependences between definitions of finiteness. Czechoslov. Math. J. 38, 389–397 (1988)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tachtsis, E.: On Ramsey’s Theorem and the existence of infinite chains or infinite anti-chains in infinite posets. J. Symb. Log. 81(01), 384–394 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tarski, A.: Sur les ensembles finis. Fund. Math. 6, 45–95 (1924)CrossRefzbMATHGoogle Scholar
  22. 22.
    Truss, J.: Classes of Dedekind finite cardinals. Fund. Math. 84, 187–208 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Truss, J.K.: The structure of amorphous sets. Ann. Pure Appl. Log. 73, 191–233 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the AegeanKarlovassi, SamosGreece

Personalised recommendations