Advertisement

Archive for Mathematical Logic

, Volume 57, Issue 1–2, pp 185–194 | Cite as

Collapsing \(\omega _2\) with semi-proper forcing

  • Stevo TodorcevicEmail author
Article
  • 77 Downloads

Abstract

We examine the differences between three standard classes of forcing notions relative to the way they collapse the continuum. It turns out that proper and semi-proper posets behave differently in that respect from the class of posets that preserve stationary subsets of \(\omega _1\).

Keywords

Oscillation Forcing Stationary set 

Mathematics Subject Classification

Primary 03E20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgartner, J.E., Taylor, A.D.: Saturation properties of ideals in generic extensions. I. Trans. Am. Math. Soc. 270(2), 557–574 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beaudoin, R.E.: The proper forcing axiom and stationary set reflection. Pac. J. Math. 149(1), 13–24 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Foreman, M., Todorcevic, S.: A new Löwenheim–Skolem theorem. Trans. Am. Math. Soc. 357(5), 1693–1715 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gitik, M.: Nonsplitting subset of \({\cal{P}}_\kappa (\kappa ^{+})\). J. Symb. Logic. 50(4), 881–894 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jech, T.: Set theory. Springer monographs in mathematics. Springer, Berlin (2003). (The third edition, revised and expanded)Google Scholar
  6. 6.
    Namba, K.: \((\omega _{1},\,2)\)-distributive law and perfect sets in generalized Baire space. Comment. Math. Univ. St. Paul. 20:107–126 (1971/1972)Google Scholar
  7. 7.
    Rosłanowski, A., Shelah, S.: More forcing notions imply diamond. Arch. Math. Logic 35(5–6), 299–313 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Shelah, S.: Semiproper forcing axiom implies Martin maximum but not \({\text{ PFA }}^+\). J. Symb. Logic 52(2), 360–367 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shelah, S.: Cardinal arithmetic, volume 29 of Oxford logic guides. Oxford University Press, New York (1994)Google Scholar
  10. 10.
    Todorcevic, S.: A note on the proper forcing axiom. In: Axiomatic set theory (Boulder, Colo., 1983), volume 31 of Contemporary mathematics, pp. 209–218. American Mathematics Society, Providence, RI (1984)Google Scholar
  11. 11.
    Todorcevic, S.: Oscillations of real numbers. In: Logic colloquium ’86 (Hull, 1986), volume 124 of Studies in logic and the foundations of mathematics, pp. 325–331. North-Holland, Amsterdam (1988)Google Scholar
  12. 12.
    Todorcevic, S.: Localized reflection and fragments of PFA. In: Set theory (Piscataway, NJ, 1999), volume 58 of DIMACS series in discrete mathematics and theoretical computer science, pp. 135–148. American Mathematics Society, Providence, RI (2002)Google Scholar
  13. 13.
    Todorcevic, S.: Walks on ordinals and their characteristics, volume 263 of progress in mathematics. Birkhäuser Verlag, Basel (2007)Google Scholar
  14. 14.
    Todorcevic, Stevo.: Notes on forcing axioms, volume 26 of Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ: Edited and with a foreword by Chong, C., Feng, Q., Yang, Y., Slaman, T.A., Woodin, W.H. (2014)Google Scholar
  15. 15.
    Woodin, H.W.: The axiom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of de Gruyter series in logic and its applications. Walter de Gruyter & Co., Berlin (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Institut de Mathématiques de JussieuParisFrance

Personalised recommendations