Archive for Mathematical Logic

, Volume 57, Issue 1–2, pp 37–71 | Cite as

On some dynamical aspects of NIP theories

  • Alireza Mofidi


We investigate some dynamical features of the actions of automorphisms in the context of model theory. We interpret a few notions such as compact systems, entropy and symbolic representations from the theory of dynamical systems in the realm of model theory. In this direction, we settle a number of characterizations of NIP theories in terms of dynamics of automorphisms and invariant measures. For example, it is shown that the property of NIP corresponds to the compactness property of some associated systems and also to the zero entropy property of automorphisms. These results give a correspondence between some notions of tameness in model theory and ergodic theory. Moreover, we study the concept of symbolic representation and consider it in some well known mathematical objects such as the circle group, Bohr sets, Sturmian sequences, the structure \((\mathbb {Z},+,U)\), and random graphs with a model theoretic point of view in mind. We establish certain characterizations for stability theoretic dividing lines, such as independence property, order property and strict order property in terms of associated symbolic representations. At the end, we propose some applications of symbolic representations and these characterizations by giving a proof for a classical theorem by Shelah and also introducing some invariants associated to the types and elements of models.


NIP theories Stability theory Measure preserving actions Dynamical systems Entropy Symbolic dynamics 

Mathematics Subject Classification

03C45 37A05 37B10 37A35 03C95 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aschenbrenner, M., Dolich, A., Haskell, D., Macpherson, D., Starchenko, S.: Vapnik–Chervonenkis density in some theories without the independence property I. Trans. Am. Math. Soc. 368(8), 5889–5949 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borel, E.: Les probabilites denombrables et leurs applications arithmetiques. Suppl. di Rend. Circ. Mat. Palermo 27, 247–271 (1909)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chernikov, A., Simon, P.: Definably amenable NIP groups.
  4. 4.
    Chernikov, A., Pillay, A., Simon, P.: External definability and groups in NIP theories. J. Lond. Math. Soc. (2) 90(1), 213–240 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Devaney, R.: An Introduction to Chaotic Dynamical Systems. Studies in Nonlinearity. Westview Press, Boulder, CO (2003) (Reprint of the second (1989) edition)Google Scholar
  6. 6.
    Downarowicz, T.: Entropy in Dynamical Systems. New Mathematical Monographs, vol. 18. Cambridge University Press, Cambridge (2011)Google Scholar
  7. 7.
    Glasner, E.: Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol. 101. American Mathematical Society, Providence, RI (2003)Google Scholar
  8. 8.
    Halmos, P., Von Neumann, J.: Operator methods in classical mechanics II. Ann. Math. Second Ser. (Ann. Math.) 43(2), 332–350 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hrushovski, E., Peterzil, Y., Pillay, A.: Groups, measures and the NIP. J. AMS 21, 563–596 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hrushovski, E., Pillay, A.: On NIP and invariant measures. J. Eur. Math. Soc. 13, 1005–1061 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ibarluca, T.: The dynamical hierarchy for Roelcke precompact Polish groups. Israel J. Math. 215(2), 965–1009 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Johnson, H.: Vapnik–Chervonenkis density on indiscernible sequences, stability, and the maximum property. Notre Dame J. Formal Logic 56(4), 583–593 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Keisler, H.J.: Measures and forking. Ann. Pure Appl. Logic 45, 119–169 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Matousek, J.: Geometric Discrepancy. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Newelski, L.: Topological dynamic of definable group actions. J. Symb. Logic 74, 50–72 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Newelski, L.: Model theoretic aspects of the Ellis semigroup. Israel J. Math. 190, 477–507 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Newelski, L.: Topological dynamics of stable groups. J. Symb. Log. 79(4), 1199–1223 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pillay, A.: Topological dynamics and definable groups. J. Symb. Logic 78(2), 657–666 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Poizat, B.: A Course in Model Theory: An Introduction to Contemporary Mathematical Logic. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pollicott, M.: Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, London Mathematical Society Lecture Note Series, vol. 180. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Pytheas Fogg, N.: Substitutions in Dynamics, Arithmetics and Combinatorics. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shelah, S.: Classification Theory and the Number of Non-isomorphic Models. North-Holland, Amsterdam (1990)zbMATHGoogle Scholar
  23. 23.
    Simon, P.: Distal and non-distal NIP theories. Ann. Pure Appl. Logic 164(3), 294–318 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Simon, P.: Type Decomposition in NIP Theories.
  25. 25.
    Tent, K., Ziegler, M.: A Course in Model Theory. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  26. 26.
    Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran
  2. 2.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations