Archive for Mathematical Logic

, Volume 57, Issue 3–4, pp 273–284 | Cite as

The subcompleteness of Magidor forcing

  • Gunter FuchsEmail author


It is shown that the Magidor forcing to collapse the cofinality of a measurable cardinal that carries a length \(\omega _1\) sequence of normal ultrafilters, increasing in the Mitchell order, to \(\omega _1\), is subcomplete.


Subcomplete forcing Iterated forcing Magidor forcing Large cardinals 

Mathematics Subject Classification

03E40 03E55 03E70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barwise, J.: Admissible Sets and Structures. Springer, Berlin (1975)CrossRefzbMATHGoogle Scholar
  2. 2.
    Fuchs, G.: On sequences generic in the sense of Magidor. J. Symb. Logic 79(4), 1286–1314 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hayut, Y., Karagila, A.: Restrictions on forcings that change cofinalities. Arch. Math. Logic 55(3), 373–384 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jensen, R.B.: Subproper and subcomplete forcing. Handwritten notes (2009).
  5. 5.
    Jensen, R.B.: Subcomplete forcing and \({{\cal{L}}}\)-forcing. In: Chong, C., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.) E-recursion, Forcing and \(C^*\)-Algebras. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 27, pp. 83–182. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  6. 6.
    Magidor, M.: Changing cofinality of cardinals. Fundam. Math. 99(1), 61–71 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.The College of Staten Island (CUNY)Staten IslandUSA
  2. 2.The Graduate Center (CUNY)New YorkUSA

Personalised recommendations