Archive for Mathematical Logic

, Volume 56, Issue 5–6, pp 523–539 | Cite as

A herbrandized functional interpretation of classical first-order logic

  • Fernando FerreiraEmail author
  • Gilda Ferreira


We introduce a new typed combinatory calculus with a type constructor that, to each type \(\sigma \), associates the star type \(\sigma ^*\) of the nonempty finite subsets of elements of type \(\sigma \). We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory calculus, we define a functional interpretation of first-order predicate logic and prove a corresponding soundness theorem. It is seen that each theorem of classical first-order logic is connected with certain formulas which are tautological in character. As a corollary, we reprove Herbrand’s theorem on the extraction of terms from classically provable existential statements.


Functional interpretations First-order logic Star combinatory calculus Finite sets Tautologies Herbrand’s theorem 

Mathematics Subject Classification

03F10 03B10 03B40 03B15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In: Buss, S.R. (ed.) Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405. North Holland, Amsterdam (1998)CrossRefGoogle Scholar
  2. 2.
    Avigad, J., Towsner, H.: Functional interpretation and inductive definitions. J. Symb. Log. 74(4), 1100–1120 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borges, A.: On the herbrandised interpretation for nonstandard arithmetic. Master’s thesis, Universidade de Lisboa (2016)Google Scholar
  4. 4.
    Diller, J.: Logical problems of functional interpretations. Ann. Pure Appl. Log. 114, 27–42 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Diller, J., Nahm, W.: Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen. Archive für mathematische Logik und Grundlagenforschung 16, 49–66 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ferreira, F., Nunes, A.: Bounded modified realizability. J. Symb. Log. 71, 329–346 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ferreira, F., Oliva, P.: Bounded functional interpretation. Ann. Pure Appl. Log. 135, 73–112 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gerhardy, P., Kohlenbach, U.: Extracting Herbrand disjunctions by functional interpretation. Arch. Math. Log. 44, 633–644 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. dialectica 12, 280–287 (1958). Reprinted with an English translation in [10], pp. 240–251Google Scholar
  10. 10.
    Gödel, K.: On a hitherto unutilized extension of the finitary standpoint. In: Feferman, S., et al. (eds.) Collected Works, vol. II. Oxford University Press, Oxford (1990)Google Scholar
  11. 11.
    Shoenfield, J.R.: Mathematical Logic. Addison-Wesley Publishing Company, Boston (1967). Republished in 2001 by AK PetersGoogle Scholar
  12. 12.
    Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75(1), 104–107 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Tait, W.: Intentional interpretations of functionals of finite type I. J. Symb. Log. 32, 198–212 (1967)CrossRefzbMATHGoogle Scholar
  14. 14.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  15. 15.
    Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344. Springer, Berlin (1973)Google Scholar
  16. 16.
    van den Berg, B., Briseid, E., Safarik, P.: A functional interpretation for nonstandard arithmetic. Ann. Pure Appl. Log. 163(12), 1962–1994 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Departamento de MatemáticaFaculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations