Advertisement

Archive for Mathematical Logic

, Volume 56, Issue 7–8, pp 783–796 | Cite as

Same graph, different universe

  • Assaf RinotEmail author
Article

Abstract

May the same graph admit two different chromatic numbers in two different universes? How about infinitely many different values? and can this be achieved without changing the cardinals structure? In this paper, it is proved that in Gödel’s constructible universe, for every uncountable cardinal \(\mu \) below the first fixed-point of the \(\aleph \)-function, there exists a graph \(\mathcal G_\mu \) satisfying the following:
  • \(\mathcal G_\mu \) has size and chromatic number \(\mu \);

  • for every infinite cardinal \(\kappa <\mu \), there exists a cofinality-preserving \({{\mathrm{GCH}}}\)-preserving forcing extension in which \({{\mathrm{Chr}}}(\mathcal G_\mu )=\kappa \).

Keywords

C-sequence graph Chromatic spectrum Mutual stationarity Cardinal fixed-point 

Mathematics Subject Classification

Primary 03E35 Secondary 05C15 05C63 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, U., Devlin, K.J., Shelah, S.: The consistency with ch of some consequences of martin’s axiom plus \(2^{\aleph _{0}}>\aleph _{1}\). Isr. J. Math. 31, 19–33 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baumgartner, J., Malitz, J., Reinhardt, W.: Embedding trees in the rationals. Proc. Natl. Acad. Sci. USA 67, 1748–1753 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brodsky, A.M., Rinot, A.: A microscopic approach to Souslin trees constructions. Part I, Preprint (2015). arXiv:1601.01821
  4. 4.
    David, R.: Some results on higher Suslin trees. J. Symb. Log. 55(2), 526–536 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Erdős, P., Hajnal, A.: On chromatic number of infinite graphs. In: Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 83–98. Academic Press, New York (1968)Google Scholar
  6. 6.
    Galvin, F., Hajnal, A.: Inequalities for cardinal powers. Ann. Math. 2(101), 491–498 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Galvin, F., Komjáth, P.: Graph colorings and the axiom of choice. Period. Math. Hung. 22(1), 71–75 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gitik, M.: No bound for the first fixed point. J. Math. Log. 5(2), 193–246 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hajnal, A., Komjáth, P.: Embedding graphs into colored graphs. Trans. Am. Math. Soc. 307(1), 395–409 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jech, T.: Set Theory. Springer Monographs in Mathematics. Springer, Berlin (2003). The third millennium edition, revised and expandedGoogle Scholar
  11. 11.
    Kechris, A.S., Solecki, S., Todorcevic, S.: Borel chromatic numbers. Adv. Math. 141(1), 1–44 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Komjáth, P., Shelah, S.: Consistently \({P}(\omega _1)\) is the union of \(<2^{\aleph _1}\) independent families. Isr. J. Math. 218, 165–173 (2017). doi: 10.1007/s11856-017-1463-5
  13. 13.
    Magidor, M., Shelah, S.: When does almost free imply free? (For groups, transversals, etc.). J. Am. Math. Soc. 7(4), 769–830 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rinot, A.: Chromatic numbers of graphs-large gaps. Combinatorica 35(2), 215–233 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shelah, S., Soifer, A.: Axiom of choice and chromatic number of the plane. J. Comb. Theory Ser. A 103(2), 387–391 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shelah, S.: Cardinal Arithmetic, Volume 29 of Oxford Logic Guides. Oxford University Press, Oxford (1994)Google Scholar
  17. 17.
    Soifer, A.: The Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of its Creators. Springer, New York (2009). With forewords by Branko Grünbaum, Peter D Johnson, Jr. and Cecil RousseauGoogle Scholar
  18. 18.
    Solovay, R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. Math. 2(92), 1–56 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Székely, L.A.: Measurable chromatic number of geometric graphs and sets without some distances in Euclidean space. Combinatorica 4(2–3), 213–218 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations