Archive for Mathematical Logic

, Volume 56, Issue 7–8, pp 935–982 | Cite as

The sharp for the Chang model is small

  • William J. MitchellEmail author


Woodin has shown that if there is a measurable Woodin cardinal then there is, in an appropriate sense, a sharp for the Chang model. We produce, in a weaker sense, a sharp for the Chang model using only the existence of a cardinal \(\kappa \) having an extender of length \(\kappa ^{+\omega _1}\).


Chang model Indiscernibles Sharps Extenders 

Mathematics Subject Classification

03E35 03E45 03E55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, C.C.: Sets constructible using \(L_{\kappa \kappa }\). In: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 1–8. Amer. Math. Soc., Providence, RI (1971)Google Scholar
  2. 2.
    Gitik, M.: Blowing up power of a singular cardinal—wider gaps. Ann. Pure Appl. Log. 116(1–3), 1–38 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gitik, M.: No bound for the first fixed point. J. Math. Log. 5(2), 193–246 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gitik, M.: Prikry-type forcings. In: Handbook of Set Theory, vol. 2, pp. 1351–1447. Springer, Dordrecht (2010)Google Scholar
  5. 5.
    Gitik, M., Koepke, P.: Violating the singular cardinals hypothesis without large cardinals. Isr. J. Math. 191(2), 901–922 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gitik, M., Mitchell, W.J.: Indiscernible sequences for extenders, and the singular cardinal hypothesis. Ann. Pure Appl. Log. 82(3), 273–316 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kunen, K.: A model for the negation of the axiom of choice. In: Cambridge Summer School in Mathematical Logic (Cambridge, 1971), pp. 489–494. Lecture Notes in Math., vol. 337. Springer, Berlin (1973)Google Scholar
  8. 8.
    Magidor, M.: Changing cofinality of cardinals. Fundam. Math. 99(1), 61–71 (1978)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Merimovich, C.: Prikry on extenders, revisited. Isr. J. Math. 160, 253–280 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations