Advertisement

Archive for Mathematical Logic

, Volume 56, Issue 7–8, pp 935–982 | Cite as

The sharp for the Chang model is small

  • William J. MitchellEmail author
Article

Abstract

Woodin has shown that if there is a measurable Woodin cardinal then there is, in an appropriate sense, a sharp for the Chang model. We produce, in a weaker sense, a sharp for the Chang model using only the existence of a cardinal \(\kappa \) having an extender of length \(\kappa ^{+\omega _1}\).

Keywords

Chang model Indiscernibles Sharps Extenders 

Mathematics Subject Classification

03E35 03E45 03E55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, C.C.: Sets constructible using \(L_{\kappa \kappa }\). In: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 1–8. Amer. Math. Soc., Providence, RI (1971)Google Scholar
  2. 2.
    Gitik, M.: Blowing up power of a singular cardinal—wider gaps. Ann. Pure Appl. Log. 116(1–3), 1–38 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gitik, M.: No bound for the first fixed point. J. Math. Log. 5(2), 193–246 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gitik, M.: Prikry-type forcings. In: Handbook of Set Theory, vol. 2, pp. 1351–1447. Springer, Dordrecht (2010)Google Scholar
  5. 5.
    Gitik, M., Koepke, P.: Violating the singular cardinals hypothesis without large cardinals. Isr. J. Math. 191(2), 901–922 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gitik, M., Mitchell, W.J.: Indiscernible sequences for extenders, and the singular cardinal hypothesis. Ann. Pure Appl. Log. 82(3), 273–316 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kunen, K.: A model for the negation of the axiom of choice. In: Cambridge Summer School in Mathematical Logic (Cambridge, 1971), pp. 489–494. Lecture Notes in Math., vol. 337. Springer, Berlin (1973)Google Scholar
  8. 8.
    Magidor, M.: Changing cofinality of cardinals. Fundam. Math. 99(1), 61–71 (1978)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Merimovich, C.: Prikry on extenders, revisited. Isr. J. Math. 160, 253–280 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations