Advertisement

Archive for Mathematical Logic

, Volume 56, Issue 7–8, pp 877–909 | Cite as

In memoriam: James Earl Baumgartner (1943–2011)

  • J. A. LarsonEmail author
Article
  • 174 Downloads

Abstract

James Earl Baumgartner (March 23, 1943–December 28, 2011) came of age mathematically during the emergence of forcing as a fundamental technique of set theory, and his seminal research changed the way set theory is done. He made fundamental contributions to the development of forcing, to our understanding of uncountable orders, to the partition calculus, and to large cardinals and their ideals. He promulgated the use of logic such as absoluteness and elementary submodels to solve problems in set theory, he applied his knowledge of set theory to a variety of areas in collaboration with other mathematicians, and he encouraged a community of mathematicians with engaging survey talks, enthusiastic discussions of open problems, and friendly mathematical conversations.

Keywords

Forcing Order Partition relations 

Mathematics Subject Classification

03E35 01A70 03–03 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, U., Rubin, M., Shelah, S.: On the consistency of some partition theorems for continuous colorings, and the structure of \(\aleph _1\)-dense real order types. Ann. Pure Appl. Log. 29(2), 123–206 (1985)zbMATHCrossRefGoogle Scholar
  2. 2.
    Abraham, U., Shelah, S.: Forcing closed unbounded sets. J. Symb. Log. 48(3), 643–657 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bagaria, J.: Book Review: Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable by Saharon Shelah and Hugh Woodin. Bull. Symb. Log. 8(8), 543–545 (2002)Google Scholar
  4. 4.
    Balcerzak, M., Hejduk, J., Baumgartner, J.E.: On certain \(\sigma \)-ideals of sets. Real Anal. Exch. 14(2), 447–453 (1988/89)Google Scholar
  5. 5.
    Banach, S.: Uber additive massfunktionen in alstrakten mengen. Fund. Math. 15, 97–101 (1930)zbMATHGoogle Scholar
  6. 6.
    Baumgartner, J.E.: On the cardinality of dense subsets of linear orderings I. Not. Am. Math. Soc. 15, 935 (1968). Abstract, preliminary reportGoogle Scholar
  7. 7.
    Baumgartner, J.E.: Undefinability of \(n\)-ary relations from unary functions. Not. Am. Math. Soc. 17, 842–843 (1969). Abstract, preliminary reportGoogle Scholar
  8. 8.
    Baumgartner, J.E.: Decompositions and embeddings of trees. Not. Am. Math. Soc. 18, 967 (1970). Abstract, preliminary reportGoogle Scholar
  9. 9.
    Baumgartner, J.E.: Results and Independence Proofs in Combinatorial Set Theory. PhD thesis, University of California, Berkeley (1970)Google Scholar
  10. 10.
    Baumgartner, J.E.: A possible extension of Cantor’s theorem on the rationals. Not. Am. Math. Soc. 18, 428–429 (1971). Abstract, preliminary reportGoogle Scholar
  11. 11.
    Baumgartner, J.E.: All \(\aleph _{1}\)-dense sets of reals can be isomorphic. Fund. Math. 79(2), 101–106 (1973)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Baumgartner, J.E.: The Hanf number for complete \({L}_{\omega _1,\omega }\)-sentences (without GCH). J. Symb. Log. 39, 575–578 (1974)zbMATHCrossRefGoogle Scholar
  13. 13.
    Baumgartner, J.E.: Improvement of a partition theorem of Erdős and Rado. J. Comb. Theory Ser. A 17, 134–137 (1974)zbMATHCrossRefGoogle Scholar
  14. 14.
    Baumgartner, J.E.: A short proof of Hindman’s theorem. J. Comb. Theory Ser. A 17, 384–386 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Baumgartner, J.E.: Some results in the partition calculus. Not. Am. Math. Soc. 21, A-29 (1974). Abstract, preliminary reportGoogle Scholar
  16. 16.
    Baumgartner, J.E.: Canonical partition relations. J. Symb. Log. 40(4), 541–554 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Baumgartner, J.E.: Ineffability properties of cardinals. I. In: Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, volume 10 of Colloq. Math. Soc. János Bolyai, pp. 109–130. North-Holland, Amsterdam (1975)Google Scholar
  18. 18.
    Baumgartner, J.E.: Partition relations for uncountable ordinals. Isr. J. Math. 21(4), 296–307 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Baumgartner, J.E.: Partitioning vector spaces. J. Comb. Theory Ser. A 18, 231–233 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Baumgartner, J.E.: Topological properties of Specker types. Not. Am. Math. Soc. 22, A-219 (1975). Abstract, preliminary reportGoogle Scholar
  21. 21.
    Baumgartner, J.E.: Almost-disjoint sets, the dense set problem and the partition calculus. Ann. Math. Log. 9(4), 401–439 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Baumgartner, J.E.: A new class of order types. Ann. Math. Log. 9(3), 187–222 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Baumgartner, J.E.: Ineffability properties of cardinals. II. In: Logic, foundations of mathematics and computability theory (Proc. Fifth Internat. Congr. Logic, Methodology and Philos. of Sci., Univ. Western Ontario, London, Ont., 1975), Part I, pp. 87–106. Univ. Western Ontario Ser. Philos. Sci., Vol. 9. Reidel, Dordrecht (1977)Google Scholar
  24. 24.
    Baumgartner, J.E.: Independence results in set theory. Not. Am. Math. Soc. 25, A248–249 (1978)Google Scholar
  25. 25.
    Baumgartner, J.E.: Independence proofs and combinatorics. In: Relations Between Combinatorics and Other Parts of Mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978), Proc. Sympos. Pure Math., XXXIV, pp. 35–46. Am. Math. Soc., Providence, R.I. (1979)Google Scholar
  26. 26.
    Baumgartner, J.E.: Chains and antichains in \({\cal{P}}(\omega )\). J. Symb. Log. 45(1), 85–92 (1980)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Baumgartner, J.E.: Order types of real numbers and other uncountable orderings. In: Ordered Sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., pp. 239–277. Reidel, Dordrecht (1982)Google Scholar
  28. 28.
    Baumgartner, J.E.: Iterated forcing. In: Surveys in Set Theory, volume 87 of London Math. Soc. Lecture Note Ser., pp. 1–59. Cambridge Univ. Press, Cambridge (1983)Google Scholar
  29. 29.
    Baumgartner, J.E.: Applications of the proper forcing axiom. In: Handbook of Set-Theoretic Topology, pp. 913–959. North-Holland, Amsterdam (1984)Google Scholar
  30. 30.
    Baumgartner, J.E.: Generic graph construction. J. Symb. Log. 49(1), 234–240 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Baumgartner, J.E.: Bases for Aronszajn trees. Tsukuba J. Math. 9(1), 31–40 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Baumgartner, J.E.: Sacks forcing and the total failure of Martin’s Axiom. Topol. Appl. 19(3), 211–225 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Baumgartner, J.E.: Book Review: Set theory. An introduction to independence proofs by Kenneth Kunen. J. Symb. Log. 51(2), 462–464 (1986)Google Scholar
  34. 34.
    Baumgartner, J.E.: Polarized partition relations and almost-disjoint functions. Logic, Methodology and Philosophy of Science, VIII (Moscow, 1987), pp. 213–222. North-Holland, Amsterdam (1989)Google Scholar
  35. 35.
    Baumgartner, J.E.: Remarks on partition ordinals. In: Set Theory and Its Applications (Toronto, ON, 1987), volume 1401 of Lecture Notes in Math., pp. 5–17. Springer, Berlin (1989)Google Scholar
  36. 36.
    Baumgartner, J.E.: Is there a different proof of the Erdős-Rado theorem? In A tribute to Paul Erdős, pp. 27–37. Cambridge Univ. Press, Cambridge (1990)Google Scholar
  37. 37.
    Baumgartner, J.E.: On the size of closed unbounded sets. Ann. Pure Appl. Log. 54(3), 195–227 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Baumgartner, J.E.: The future of modern set theory. Ann. Jpn. Assoc. Philos. Sci. 8(4), 187–190 (1994)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Baumgartner, J.E.: Ultrafilters on \(\omega \). J. Symb. Log. 60(2), 624–639 (1995)zbMATHCrossRefGoogle Scholar
  40. 40.
    Baumgartner, J.E.: In Memoriam: Paul Erdős 1913–1996. Bull. Symb. Log. 3(1), 70–71 (1997)zbMATHCrossRefGoogle Scholar
  41. 41.
    Baumgartner, J.E.: Hajnal’s contributions to combinatorial set theory and the partition calculus. In: Set Theory (Piscataway, NJ, 1999), volume 58 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pp. 25–30. Am. Math. Soc., Providence, RI (2002)Google Scholar
  42. 42.
    Baumgartner, J.E., Dordal, P.: Adjoining dominating functions. J. Symb. Log. 50(1), 94–101 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Baumgartner, J.E., Erdős, P., Higgs, D.A.: Cross-cuts in the power set of an infinite set. Order 1(2), 139–145 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Baumgartner, J.E., Frankiewicz, R., Zbierski, P.: Embedding of Boolean algebras in \(P(\omega )/{\text{ fin }}\). Fund. Math. 136(3), 187–192 (1990)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Baumgartner, J.E., Galvin, F.: Generalized Erdős cardinals and \(0^{\#}\). Ann. Math. Log. 15(3), 289–313 (1979), 1978Google Scholar
  46. 46.
    Baumgartner, J.E., Galvin, F., Laver, R., McKenzie, R.: Game theoretic versions of partition relations. In: Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, volume 10 of Colloq. Math. Soc. János Bolyai, pp. 131–135. North-Holland, Amsterdam (1975)Google Scholar
  47. 47.
    Baumgartner, J.E., Hajnal, A.: A proof (involving Martin’s Axiom) of a partition relation. Yellow Series of the University of Calgary, Research Paper 122, April 1971. Fund. Math. 78(3), 193–203 (1973)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Baumgartner, J.E., Hajnal, A.: A remark on partition relations for infinite ordinals with an application to finite combinatorics. In: Logic and Combinatorics (Arcata, Calif., 1985), volume 65 of Contemp. Math., pp. 157–167. Am. Math. Soc., Providence, RI (1987)Google Scholar
  49. 49.
    Baumgartner, J.E., Hajnal, A.: Polarized partition relations. J. Symb. Log. 66(2), 811–821 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Baumgartner, J.E., Hajnal, A., Máté, A.: Weak saturation properties of ideals. In: Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, volume 10 of Colloq. Math. Soc. János Bolyai, pp. 137–158. North-Holland, Amsterdam (1975)Google Scholar
  51. 51.
    Baumgartner, J.E., Hajnal, A., Todorcevic, S.: Extensions of the Erdős–Rado theorem. Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), pp. 1–17. Kluwer, Dordrecht (1993)Google Scholar
  52. 52.
    Baumgartner, J.E., Harrington, L., Kleinberg, E.: Adding a closed unbounded set. J. Symb. Log. 41, 481–482 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Baumgartner, J.E., Komjáth, P.: Boolean algebras in which every chain and antichain is countable. Fund. Math. 111(2), 125–133 (1981)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Baumgartner, J.E., Larson, J.A.: A diamond example of an ordinal graph with no infinite paths. Ann. Pure Appl. Log. 47(1), 1–10 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Baumgartner, J.E., Laver, R.: Iterated perfect-set forcing. Ann. Math. Log. 17(3), 271–288 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Baumgartner, J.E., Martin, D.A., Shelah, S. (eds.): Axiomatic set theory, volume 31 of Contemporary Mathematics, Providence, RI (1984). American Mathematical SocietyGoogle Scholar
  57. 57.
    Baumgartner, J.E., Prikry, K.: On a theorem of Silver. Discrete Math. 14(1), 17–21 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Baumgartner, J.E., Prikry, K.: Singular cardinals and the generalized continuum hypothesis. Am. Math. Mon. 84(2), 108–113 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Baumgartner, J.E., Shelah, S.: Remarks on superatomic Boolean algebras. Ann. Pure Appl. Log. 33(2), 109–129 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Baumgartner, J.E., Shelah, S., Thomas, S.: Maximal subgroups of infinite symmetric groups. Notre Dame J. Formal Log. 34(1), 1–11 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Baumgartner, J.E., Spinas, O.: Independence and consistency proofs in quadratic form theory. J. Symb. Log. 56(4), 1195–1211 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Baumgartner, J.E., Tall, F.D.: Reflecting Lindelöfness. In: Proceedings of the International Conference on Topology and its Applications (Yokohama, 1999), vol. 122, pp. 35–49 (2002)Google Scholar
  63. 63.
    Baumgartner, J.E., Taylor, A.D.: Partition theorems and ultrafilters. Trans. Am. Math. Soc. 241, 283–309 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Baumgartner, J.E., Taylor, A.D.: Saturation properties of ideals in generic extensions. I. Trans. Am. Math. Soc. 270(2), 557–574 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Baumgartner, J.E., Taylor, A.D.: Saturation properties of ideals in generic extensions. II. Trans. Am. Math. Soc. 271(2), 587–609 (1982)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Baumgartner, J.E., Taylor, A.D., Wagon, S.: On splitting stationary subsets of large cardinals. J. Symb. Log. 42(2), 203–214 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Baumgartner, J.E., Taylor, A.D., Wagon, S.: Ideals on uncountable cardinals. In: Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977), volume 96 of Stud. Logic Foundations Math., pp. 67–77. North-Holland, Amsterdam (1978)Google Scholar
  68. 68.
    Baumgartner, J.E., van Douwen, E.K.: Strong realcompactness and weakly measurable cardinals. Topol. Appl. 35(2–3), 239–251 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Baumgartner, J.E., Weese, M.: Partition algebras for almost-disjoint families. Trans. Am. Math. Soc. 274(2), 619–630 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Beller, A., Litman, A.: A strengthening of Jensen’s \( cm\) principles. J. Symb. Log. 45(2), 251–264 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Brech, C., Koszmider, P.: On universal Banach spaces of density continuum. Isr. J. Math. 190, 93–110 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Brodsky, A.M.: A theory of stationary trees and the balanced Baumgartner–Hajnal–Todorcevic theorem for trees. Acta Math. Hungar. 144(2), 285–352 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Chang, C.C., Keisler, H.J.: Model Theory. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973). Studies in Logic and the Foundations of Mathematics, vol. 73Google Scholar
  74. 74.
    Claverie, B., Schindler, R.: Woodin’s axiom \((\ast )\), bounded forcing axioms, and precipitous ideals on \(\omega _1\). J. Symb. Log. 77(2), 475–498 (2012)zbMATHCrossRefGoogle Scholar
  75. 75.
    Cummings, J.: Iterated forcing and elementary embeddings. In: Handbook of Set Theory, pp. 775–883. Springer, Dordrecht (2010)Google Scholar
  76. 76.
    Devlin, K.J.: The Yorkshireman’s guide to proper forcing. In: Surveys in Set Theory, volume 87 of London Math. Soc. Lecture Note Ser., pp. 60–115. Cambridge Univ. Press, Cambridge (1983)Google Scholar
  77. 77.
    Devlin, K.J., Johnsbråten, H.: The Souslin Problem. Lecture Notes in Mathematics, vol. 405. Springer, Berlin (1974)zbMATHCrossRefGoogle Scholar
  78. 78.
    Easton, W.B.: Powers of Regular Cardinals. PhD thesis, Princeton University, Princeton, NJ (1964). Advisor A. ChurchGoogle Scholar
  79. 79.
    Erdős, P.: Some set-theoretical properties of graphs. Rev. Univ. Nac. Tucumán Ser. A 3, 363–367 (1942)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Erdős, P., Hajnal, A.: Solved and unsolved problems in set theory. In: Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., UC Berkeley, CA, 1971), vol. 25, pp 261–265. Am. Math. Soc., Providence, R.I. (1974)Google Scholar
  81. 81.
    Erdős, P., Hajnal, A.: Unsolved problems in set theory. In: Axiomatic Set Theory (Proc. Sympos. Pure Math., UCLA, 1967), vol. 13, pp. 17–48. Am. Math. Soc., Providence, R.I. (1971)Google Scholar
  82. 82.
    Erdős, P., Hajnal, A., Rado, R.: Partition relations for cardinal numbers. Acta Math. Acad. Sci. Hungar. 16, 93–196 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Erdős, P., Rado, R.: A problem on ordered sets. J. Lond. Math. Soc. (2) 28(4), 426–438 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Erdős, P., Rado, R.: A partition calculus in set theory. Bull. Am. Math. Soc. 62, 427–489 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Erdős, P., Tarski, A.: On families of mutually exclusive sets. Ann. Math. (2) 44(2), 315–329 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Erdős, P.: Problems and results on finite and infinite combinatorial analysis. In: Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pp. 403–424. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam (1975)Google Scholar
  87. 87.
    Erdős, P., Hajnal, A.: On a property of families of sets. Acta Math. Acad. Sci. Hungar. 12, 87–123 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Erdős, P., Hajnal, A.: Some remarks concerning our paper “On the structure of set-mappings”. Non-existence of a two-valued \(\sigma \)-measure for the first uncountable inaccessible cardinal. Acta Math. Acad. Sci. Hungar. 13, 223–226 (1962)Google Scholar
  89. 89.
    Erdős, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hungar. 17, 61–99 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Erdös, P., Rado, R.: A partition calculus in set theory. Bull. Am. Math. Soc. 62, 427–489 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Erdős, P., Tarski, A.: On some problems involving inaccessible cardinals. In: Essays on the Foundations of Mathematics, pp. 50–82. Magnes Press, Hebrew Univ., Jerusalem (1961)Google Scholar
  92. 92.
    Eskew, M.: Measurability Properties on Small Cardinals. PhD thesis, University of California, Irvine, CA (2014). Advisor M. ZemanGoogle Scholar
  93. 93.
    Feng, Q.: A hierarchy of Ramsey cardinals. Ann. Pure Appl. Log. 49(3), 257–277 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Fleissner, W.G., Kunen, K.: Barely Baire spaces. Fund. Math. 101(3), 229–240 (1978)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Foreman, M.: Chang’s conjecture, generic elementary embeddings and inner models for huge cardinals. Bull. Symb. Log. 21(3), 251–269 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Foreman, M., Hajnal, A.: A partition relation for successors of large cardinals. Math. Ann. 325(3), 583–623 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Foreman, M., Laver, R.: Some downwards transfer properties for \(\aleph _2\). Adv. Math. 67(2), 230–238 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Foreman, M., Magidor, M.: Large cardinals and definable counterexamples to the continuum hypothesis. Ann. Pure Appl. Log. 76(1), 47–97 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Foreman, M., Magidor, M., Shelah, S.: Martin’s maximum, saturated ideals and nonregular ultrafilters. II. Ann. Math. (2) 127(3), 521–545 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Friedman, H.M.: On closed sets of ordinals. Proc. Am. Math. Soc. 43, 190–192 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Friedman, H.M.: Subtle cardinals and linear orderings. Ann. Pure Appl. Log. 107(1–3), 1–34 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Friedman, S.-D.: Forcing with finite conditions. In: Set theory, Trends Math., pp. 285–295. Birkhäuser, Basel (2006)Google Scholar
  103. 103.
    Gaifman, H., Specker, E.: Isomorphism types of trees. Proc. Am. Math. Soc. 15, 1–7 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Galvin, F.: Chromatic numbers of subgraphs. Period. Math. Hungar. 4, 117–119 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Galvin, F.: On a partition theorem of Baumgartner and Hajnal. In: Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, pp. 711–729. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam (1975)Google Scholar
  106. 106.
    Gitik, M.: On normal precipitous ideals. Isr. J. Math. 175, 191–219 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Gitik, M., Shelah, S.: Less saturated ideals. Proc. Am. Math. Soc. 125(5), 1523–1530 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Hajnal, A.: Private conversation on Baumgartner-Hajnal Theorem. Jean Larson interviewed Hajnal at the Erdős Centennial in Budapest, July 2013Google Scholar
  109. 109.
    Halbeisen, L.: Families of almost disjoint Hamel bases. Extr. Math. 20(2), 199–202 (2005)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Harrington, L., Shelah, S.: Some exact equiconsistency results in set theory. Notre Dame J. Formal Log. 26(2), 178–188 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Hausdorff, F.: Untersuchungen über Ordnugstypen IV, V. Berichte über die Verlhandlungen der Königlich Säsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physiche Klasse 59, 84–159 (1907)Google Scholar
  112. 112.
    Hausdorff, F.: Grundzüge einer Theorie der geordnete Mengenlehre. Math. Ann. 65, 435–505 (1908)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Ishiu, T.: \(\alpha \)-properness and Axiom A. Fund. Math. 186(1), 25–37 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Jech, T.: Non-provability of Souslin’s hypothesis. Comment. Math. Univ. Carol. 8(2), 291–305 (1967)MathSciNetzbMATHGoogle Scholar
  115. 115.
    Jech, T.: Set Theory. Springer Monographs in Mathematics. Springer, Berlin (2003). The third millennium edition, revised and expandedGoogle Scholar
  116. 116.
    Jech, T., Prikry, K.: On ideals of sets and the power set operation. Bull. Am. Math. Soc. 82(4), 593–595 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Jech, T. (ed.): Axiomatic set theory. Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967. American Mathematical Society, Providence, R.I. (1974)Google Scholar
  118. 118.
    Jensen, R.B.: Modelle der Mengenlehre. Widerspruchsfreiheit und Unabhängigkeit der Kontinuum-Hypothese und des Auswahlaxioms. Ausgearbeitet von Franz Josef Leven. Lecture Notes in Mathematics, No. 37. Springer, Berlin (1967)Google Scholar
  119. 119.
    Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Log. 4, 229–308; erratum, ibid. 4 (1972), 443, 1972. With a section by Jack SilverGoogle Scholar
  120. 120.
    Jensen, R.B., Kunen, K.: Some Combinatorial Properties of \(L\) and \(V\). Handwritten manuscript, scanned and posted to the Jensen website, April 1969Google Scholar
  121. 121.
    Jensen, R.B., Schimmerling, E., Schindler, R., Steel, J.R.: Stacking mice. J. Symb. Log. 74(1), 315–335 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Jensen, R.B., Steel, J.R.: \(K\) without the measurable. J. Symb. Log. 78(3), 708–734 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Jones, A.L.: A polarized partition relation for weakly compact cardinals using elementary substructures. J. Symb. Log. 71(4), 1342–1352 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Kanamori, A.: The higher infinite. Springer Monographs in Mathematics. Springer, Berlin, 2d edn (2009). Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 editionGoogle Scholar
  125. 125.
    Kanamori, A., Magidor, M.: The evolution of large cardinal axioms in set theory. In: Higher Set Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977), volume 669 of Lecture Notes in Math., pp. 99–275. Springer, Berlin (1978)Google Scholar
  126. 126.
    Keisler, H.J., Tarski, A.: From accessible to inaccessible cardinals. Results holding for all accessible cardinal numbers and the problem of their extension to inaccessible ones. Fund. Math. 53, 225–308 (1963/1964). Corrections on page 119 of volume 55 (1965)Google Scholar
  127. 127.
    Komjáth, P.: Consistency results on infinite graphs. Isr. J. Math. 61, 285–294 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Komjáth, P.: Subgraph chromatic number. In: Set theory (Piscataway, NJ, 1999), volume 58 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pp. 99–106. Am. Math. Soc., Providence, RI (2002)Google Scholar
  129. 129.
    Krueger, J.: Fat sets and saturated ideals. J. Symb. Log. 68(3), 837–845 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Krueger, J.: Adding a club with finite conditions, Part II. Arch. Math. Log. 54(1–2), 161–172 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Krueger, J., Schimmerling, E.: An equiconsistency result on partial squares. J. Math. Log. 11(1), 29–59 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Kunen, K.: Some applications of iterated ultrapowers in set theory. Ann. Math. Log. 1, 179–227 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Kunen, K.: Saturated ideals. J. Symb. Log. 43(1), 65–76 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Kurepa, Đ.: Ensembles ordonnées et ramifiés. Publ. Math. Univ. Belgrade 4, 1–138 (1935). A35Google Scholar
  135. 135.
    Kurepa, Đ.: Ensembles linéaires et une classe de tableaux ramifiés (Tableaux ramifiés de M. Aronszajn). Publ. Inst. Math. (Beograd) 6, 129–160 (1937)zbMATHGoogle Scholar
  136. 136.
    Kurepa, Đ.: Sur la puissance des ensembles partillement ordonnés. C. R. Soc. Sci. Varsovie, Cl. Math. 32, 61–67 (1939). Sometimes the journal is listed in Polish: Sprawozdania Towarzystwo Naukowe Warszawa Mat.-Fiz. as in the Math Review by BagemihlGoogle Scholar
  137. 137.
    Larson, P.: Separating stationary reflection principles. J. Symb. Log. 65(1), 247–258 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Laver, R.: Order Types and Well-Quasi-Orderings. PhD thesis, University of California, Berkeley (1969). Advisor R. McKenzieGoogle Scholar
  139. 139.
    Laver, R.: On the consistency of Borel’s conjecture. Acta Math. 137(3–4), 151–169 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Laver, R.: Making the supercompactness of \(\kappa \) indestructible under \(\kappa \)-directed closed forcing. Isr. J. Math. 29(4), 385–388 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Magidor, M.: There are many normal ultrafiltres corresponding to a supercompact cardinal. Isr. J. Math. 9, 186–192 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Magidor, M.: Reflecting stationary sets. J. Symb. Log. 47(4), 755–771 (1983), 1982Google Scholar
  143. 143.
    Malitz, J.I.: The Hanf number for complete \({L}_{\omega _1,\omega }\)-sentences. The Syntax and Semantics of Infinitary Languages, volume 72 of Lecture Notes in Mathematics, pp. 166–181. Springer, Berlin (1968)CrossRefGoogle Scholar
  144. 144.
    Martínez, J.C.: A consistency result on thin-very tall Boolean algebras. Isr. J. Math 123, 273–284 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    Martínez, J.C.: On cardinal sequences of LCS spaces. Topol. Appl. 203, 91–97 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Matet, P.: Partition relations for \(\kappa \)-normal ideals on \(P_\kappa (\lambda )\). Ann. Pure Appl. Log. 121(1), 89–111 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Milner, E.C., Prikry, K.: A partition relation for triples using a model of Todorčević. Discrete Math. 95(1–3), 183–191 (1991). Directions in infinite graph theory and combinatorics (Cambridge, 1989)Google Scholar
  148. 148.
    Mitchell, W.J.: Aronszajn Trees and the Independence of the Transfer Property. PhD thesis, University of California, Berkeley (1970). Advisor J. SilverGoogle Scholar
  149. 149.
    Mitchell, W.J.: Aronszajn trees and the independence of the transfer property. Ann. Math. Log. 5, 21–46 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Mitchell, W.J.: Aronszajn trees and the independence of the transfer property. Ann. Math. Log. 5, 21–46 (1972/73)Google Scholar
  151. 151.
    Mitchell, W.J.: \(I[\omega _2]\) can be the nonstationary ideal on \(\text{ Cof }(\omega _1)\). Trans. Am. Math. Soc. 361(2), 561–601 (2009)zbMATHCrossRefGoogle Scholar
  152. 152.
    Monk, J.D.: The size of maximal almost disjoint families. Dissertationes Math. (Rozprawy Mat.), 437, 47 (2006)Google Scholar
  153. 153.
    Moore, G.H.: The origins of forcing. In: Drake, F.R., Truss, J.K. (eds.) Logic Colloquium ’86 (Hull 1986), volume 124 of Studies in Logic and the Foundations of Mathematics, pp. 143–173. North Holland, Amsterdam (1988)Google Scholar
  154. 154.
    Moore, J.T.: A five element basis for the uncountable linear orders. Ann. Math. (2) 163(2), 669–688 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    Neeman, I.: Forcing with sequences of models of two types. Notre Dame J. Form. Log. 55(2), 265–298 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. S2–30(1), 264–286 (1930)MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Rinot, A.: Chain conditions of products, and weakly compact cardinals. Bull. Symb. Log. 20(3), 293–314 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Rinot, A.: Chromatic numbers of graphs–large gaps. Combinatorica 35(2), 215–233 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    Scott, D.J. (ed.): Axiomatic set theory. Proc. Sympos. Pure Math Vol. XIII, Part I, Univ. Calif., Los Angeles, Calif., 1967. American Mathematical Society, Providence, R.I. (1971)Google Scholar
  160. 160.
    Sharpe, I., Welch, P.D.: Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties. Ann. Pure Appl. Log. 162(11), 863–902 (2011)zbMATHCrossRefGoogle Scholar
  161. 161.
    Shelah, S.: Independence results. J. Symb. Log. 45(3), 563–573 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    Shelah, S.: Proper forcing, volume 940 of Lecture Notes in Mathematics. Springer, Berlin (1982)Google Scholar
  163. 163.
    Shelah, S.: Iterated forcing and normal ideals on \(\omega _1\). Isr. J. Math. 60(3), 345–380 (1987)zbMATHCrossRefGoogle Scholar
  164. 164.
    Shelah, S.: Reflecting stationary sets and successors of singular cardinals. Arch. Math. Log. 31(1), 25–53 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    Shelah, S.: Proper and improper forcing, 2nd edn. Perspectives in Mathematical Logic. Springer, Berlin (1998)Google Scholar
  166. 166.
    Shelah, S., Woodin, H.: Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable. Isr. J. Math. 70(3), 381–394 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    Shoenfield, J.R.: Unramified forcing. In: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 357–381. Am. Math. Soc., Providence, R.I. (1971)Google Scholar
  168. 168.
    Sierpiński, W.: Sur une décomposition d’ensembles. Monatsh. Math. Phys. 35(1), 239–242 (1928)MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Sierpiński, W.: Sur un problème de la théorie des relations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 2(3), 285–287 (1933)MathSciNetzbMATHGoogle Scholar
  170. 170.
    Sierpiński, W.: Hypothèse du continu. Chelsea Publishing Company, New York, N.Y., 1956. 2nd ed; 1st ed, 1934, WarsawGoogle Scholar
  171. 171.
    Silver, J.: Some Applications of Model Theory in Set Theory. PhD thesis, University of California, Berkeley (1966). Advisor R. VaughtGoogle Scholar
  172. 172.
    Silver, J.: A large cardinal in the constructible universe. Fund. Math. 69, 93–100 (1970)MathSciNetzbMATHGoogle Scholar
  173. 173.
    Silver, J.: On the singular cardinals problem. In: Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), vol. 1, pp. 265–268. Canad. Math. Congress, Montreal, Que. (1975)Google Scholar
  174. 174.
    Solovay, R.M.: The measure problem. J. Symb. Log. 29, 227–228 (1964). Abstract for the Association of Symbolic Logic meeting of July 13–17, 1964 held at the University of Bristol; received July 6 (1964)Google Scholar
  175. 175.
    Solovay, R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. Math. 2(92), 1–56 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Solovay, R.M.: Real-valued measurable cardinals. In: Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 397–428. Am. Math. Soc., Providence, R.I. (1971)Google Scholar
  177. 177.
    Solovay, R.M., Reinhardt, W.N., Kanamori, A.: Strong axioms of infinity and elementary embeddings. Ann. Math. Log. 13(1), 73–116 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    Solovay, R.M., Tennenbaum, S.: Iterated Cohen extensions and Souslin’s problem. Ann. Math. 2(94), 201–245 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    Steel, J.R.: The core model iterability problem, volume 8 of Lecture Notes in Logic. Springer, Berlin (1996)Google Scholar
  180. 180.
    Steel, J.R.: What is \(\dots \) a Woodin cardinal? Not. Am. Math. Soc. 54(9), 1146–1147 (2007)MathSciNetzbMATHGoogle Scholar
  181. 181.
    Suslin, M.: Problème 3. Fund. Math. 1, 223 (1920)Google Scholar
  182. 182.
    Tarski, A.: Quelques théorèmes qui équivalent à l’axiom du choix. Fund. Math. 7, 147–154 (1925)Google Scholar
  183. 183.
    Tarski, A.: Sur la décomposition des ensembles en sous-ensembles presque disjoints. Fund. Math. 12, 188–205 (1928)zbMATHGoogle Scholar
  184. 184.
    Tarski, A.: Sur la décomposition des ensembles en sous-ensembles presque disjoints (supplément). Fund. Math. 14, 205–215 (1929)zbMATHGoogle Scholar
  185. 185.
    Tarski, A.: Ideale in vollstädigen Mengenkörpern, ii. Fund. Math. 33, 51–65 (1945)MathSciNetzbMATHGoogle Scholar
  186. 186.
    Tennenbaum, S.: Souslin’s problem. Proc. Nat. Acad. Sci. USA 59, 60–63 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    Todorcevic, S.: Some consequences of \({\rm MA}+\lnot {\rm wKH}\). Topol. Appl. 12(2), 187–202 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    Todorcevic, S.: Forcing positive partition relations. Trans. Am. Math. Soc. 280(2), 703–720 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Todorcevic, S.: A note on the proper forcing axiom. In: Baumgartner, J.E., Martin, D.A., Shelah, S. (eds.) Axiomatic Set Theory, Volume 31 of Contemporary Mathematics, pp. 209–218. American Mathematical Society (1984)Google Scholar
  190. 190.
    Todorcevic, S.: Trees and linearly ordered sets. In: Handbook of Set-Theoretic Topology, pp. 235–293. North-Holland, Amsterdam (1984)Google Scholar
  191. 191.
    Todorcevic, S.: Partition relations for partially ordered sets. Acta Math. 155(1–2), 1–25 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  192. 192.
    Todorcevic, S.: Partitioning pairs of countable ordinals. Acta Math. 159(3–4), 261–294 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  193. 193.
    Todorcevic, S.: Partition Problems in Topology, volume 84 of Contemporary Mathematics. American Mathematical Society, Providence, RI (1989)Google Scholar
  194. 194.
    Todorcevic, S.: Comparing the continuum with the first two uncountable cardinals. In: Logic and Scientific Methods (Florence, 1995), volume 259 of Synthese Lib., pp. 145–155. Kluwer Acad. Publ., Dordrecht (1997)Google Scholar
  195. 195.
    Ulam, S.: Zur masstheorie in der allgemeinen mengenlehre. Fund. Math. 16(1), 140–150 (1930)zbMATHGoogle Scholar
  196. 196.
    Veličković, B.: Forcing axioms and stationary sets. Adv. Math. 94(2), 256–284 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  197. 197.
    Velickovic, B., Venturi, G.: Proper forcing remastered. Appalachian Set Theory 2006–2012, volume 213 of London Mathematical Society Lecture Note Series, pp. 331–362. Cambridge University Press, Cambridge (2013)Google Scholar
  198. 198.
    Viale, M., Weiß, C.: On the consistency strength of the proper forcing axiom. Adv. Math. 228(5), 2672–2687 (2011)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Florida, GainesvilleGainesvilleUSA

Personalised recommendations