Archive for Mathematical Logic

, Volume 56, Issue 7–8, pp 849–876 | Cite as

On constructions with 2-cardinals

  • Piotr KoszmiderEmail author


We propose developing the theory of consequences of morasses relevant in mathematical applications in the language alternative to the usual one, replacing commonly used structures by families of sets originating with Velleman’s neat simplified morasses called 2-cardinals. The theory of related trees, gaps, colorings of pairs and forcing notions is reformulated and sketched from a unifying point of view with the focus on the applicability to constructions of mathematical structures like Boolean algebras, Banach spaces or compact spaces. The paper is dedicated to the memory of Jim Baumgartner whose seminal joint paper (Baumgartner and Shelah in Ann Pure Appl Logic 33(2):109–129, 1987) with Saharon Shelah provided a critical mass in the theory in question. A new result which we obtain as a side product is the consistency of the existence of a function \(f:[\lambda ^{++}]^2\rightarrow [\lambda ^{++}]^{\le \lambda }\) with the appropriate \(\lambda ^+\)-version of property \(\Delta \) for regular \(\lambda \ge \omega \) satisfying \(\lambda ^{<\lambda }=\lambda \).


Morasses Property \(\Delta \) \(\rho \)-functions Models as side conditions Hausdorff gaps 

Mathematics Subject Classification

03E05 03E35 03E75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argyros, S., Lopez-Abad, J., Todorcevic, S.: A class of Banach spaces with few non-strictly singular operators. J. Funct. Anal. 222(2), 306–384 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aviles, A., Todorcevic, S.: Zero subspaces of polynomials on \({\ell } _{1}(\Gamma )\). J. Math. Anal. Appl. 350(2), 427–435 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baumgartner, J.: Almost-disjoint sets, the dense set problem and the partition calculus. Ann. Math. Log. 9(4), 401–439 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baumgartner, J.: Applications of the proper forcing axiom. In: Kunen, K., Vaughan, J.E. (eds.) Handbook of Set-Theoretic Topology, pp. 913–959. North-Holland, Amsterdam (1984)Google Scholar
  5. 5.
    Baumgartner, J., Shelah, S.: Remarks on superatomic Boolean algebras. Ann. Pure Appl. Log. 33(2), 109–129 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baumgartner, J., Spinas, O.: Independence and consistency proofs in quadratic form theory. J. Symb. Log. 56(4), 1195–1211 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brech, C., Koszmider, P.: Thin-very tall compact scattered spaces which are hereditarily separable. Trans. Am. Math. Soc. 363(1), 501–519 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Die Grundlehren der mathematischen Wissenschaften, Band 211. Springer, New York (1974)Google Scholar
  9. 9.
    Devlin, K.: Order types, trees, and a problem of Erdos and Hajnal. Period. Math. Hung. 5, 153–160 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Devlin, K.: Aspects of Constructibility. Lecture Notes in Mathematics, vol. 354. Springer (1973)Google Scholar
  11. 11.
    Dow, A.: An introduction to applications of elementary submodels to topology. Topol. Proc. 13(1), 17–72 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Eda, K., Gruenhage, G., Koszmider, P., Tamano, K., Todorcevic, S.: Sequential fans in topology. Topol. Appl. 67(3), 189–220 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gorelic, I.: The Baire category and forcing large Lindelof spaces with points \({G_{\delta }}\). Proc. Am. Math. Soc. 118(2), 603–607 (1993)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hajnal, A., Juhasz, I.: On spaces in which every small subspace is metrizable. Bull. Pol. Acad. Sci. Ser. Mat. Astron. Phys. 24, 727–731 (1976)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hajnal, A., Juhasz, I.: A consistency result concerning heredetarily \({\alpha }\)-Lindelof spaces. Acta Math. Acad. Sci. Hung. 24, 307–312 (1973)CrossRefzbMATHGoogle Scholar
  16. 16.
    Irrgang, B.: Morasses and finite support iterations. Proc. Am. Math. Soc. 137(3), 1103–1113 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Irrgang, B.: Forcings constructed along morasses. J. Symb. Log. 76(4), 1097–1125 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jech, T.: Set Theory. The Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer, Berlin (2003)Google Scholar
  19. 19.
    Jensen, R., Schlechta, K.: Results on the generic Kurepa hypothesis. Arch. Math. Log. 30, 13–27 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Juhasz, I., Koszmider, P., Soukup, L.: A first countable, initially \({\omega }_{1}\)-compact but non-compact space. Topol. Appl. 156(10), 1863–1879 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Koepke, P., Martinez, J.: Superatomic Boolean algebras constructed from morasses. J. Symb. Log. 60(3), 940–951 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Komjath, P.: Morasses and the Levy collapse. J. Symb. Log. 52(1), 111–115 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Koszmider, P.: Semimorasses and nonreflection at singular cardinals. Ann. Pure Appl. Log. 72(1), 1–23 (1995). Appl. LogicMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Koszmider, P.: On strong chains of uncountable functions. Isr. J. Math. 118, 289–315 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Koszmider, P.: Universal matrices and strongly unbounded functions. Math. Res. Lett. 9(4), 549–566 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Koszmider, P.: A space \(C(K)\) where all nontrivial complemented subspaces have big densities. Stud. Math. 168(2), 109–127 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Koszmider, P.: Kurepa trees and topological non-reflection. Topol. Appl. 151(1–3), 77–98 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Koszmider, P.: On large indecomposable Banach spaces. J. Funct. Anal. 264(8), 1779–1805 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kunen, K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, vol. 102. North Holland, Amsterdam (1980)Google Scholar
  30. 30.
    Martinez, J.: Some open questions for superatomic Boolean algebras. Notre Dame J. Form. Log. 46(3), 353–356 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Martinez, J., Soukup, L.: Superatomic Boolean algebras constructed from strongly unbounded functions. MLQ Math. Log. Q. 57(5), 456–469 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Morgan, C.: Morasses, square and forcing axioms. Ann. Pure Appl. Log. 80(2), 139–163 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Morgan, C.: Higher gap morasses. IA. Gap-two morasses and condensation. J. Symb. Log. 63(3), 753–787 (1998)Google Scholar
  34. 34.
    Morgan, C.: Local connectedness and distance functions. In: Bagaria, J., Todorcevic, S. (eds.) Set Theory. Trends in Mathematics, pp. 345–400. Birkhauser, Basel (2006)Google Scholar
  35. 35.
    Neeman, I.: Forcing with sequences of models of two types. Notre Dame J. Form. Log. 55(2), 265–298 (2014)Google Scholar
  36. 36.
    Rabus, M.: An \({\omega }_{2}\)-minimal Boolean algebra. Trans. Am. Math. Soc. 348(8), 3235–3244 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Roitman, J.: Superatomic Boolean algebras. In: Handbook of Boolean Algebras, vol. 3, pp. 719–740. North-Holland, Amsterdam (1989)Google Scholar
  38. 38.
    Shelah, S.: On some problems in topology (preprint) Google Scholar
  39. 39.
    Shelah, S., Stanley, L.: \(S\)-forcing. I. A “black-box” theorem for morasses, with applications to super-Souslin trees. Isr. J. Math. 43(3), 185–224 (1982)Google Scholar
  40. 40.
    Shelah, S., Steprans, J.: Extraspecial p-groups. Ann. Pure Appl. Log. 34(1), 87–97 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shelah, S.: On long increasing chains modulo flat ideals. MLQ Math. Log. Q. 56(4), 397–399 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Szalkai, I.: An inductive definition of higher gap simplified morasses. Publ. Math. Debr. 58(4), 605–634 (2001)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Todorcevic, S.: Directed sets and cofinal types. Trans. Am. Math. Soc. 290(2), 711–723 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Todorcevic, S.: Partitioning pairs of countable ordinals. Acta Math. 159, 261–294 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Todorcevic, S.: Conjectures of Rado and Chang and cardinal arithmetic. In: Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), pp. 385–398, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 411, Kluwer Acad. Publ., Dordrecht (1993)Google Scholar
  46. 46.
    Todorcevic, S.: Remarks on Martin’s axiom and continuum hypothesis. Can. J. Math. 43, 832–851 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Todorcevic, S.: Irredundant sets in Boolean algebras. Trans. Am. Math. Soc. 339(1), 35–44 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Todorcevic, S.: Walks on Ordinals and Their Characteristics. Progress in Mathematics, vol. 263. Birkhauser, Basel (2007)Google Scholar
  49. 49.
    Todorcevic, S.: Coherent sequences. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, vol. 1–3, pp. 215–296. Springer, Dordrecht (2010)Google Scholar
  50. 50.
    Velickovic, B.: Forcing axioms and stationary sets. Adv. Math. 94(2), 256 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Velickovic, B., Venturi, G.: Proper forcing remastered. In: Cummings, J., Schimmerling, E. (eds.) Appalachian Set Theory 2006–2012. London Mathematical Society Lecture Notes Series, vol. 406, pp. 331–362. Cambridge University Press, Cambridge, UK (2013)Google Scholar
  52. 52.
    Velleman, D.: Morasses, diamond and forcing. AML 23, 199–281 (1983)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Velleman, D.: Simplified morasses. JSL 49(1), 257–271 (1984)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Velleman, D.: \({\omega }\)-morasses, and a weak form of Martin’s axiom provable in ZFC. Trans. Am. Math. Soc. 285(2), 617–627 (1984)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Velleman, D.: Simplified gap-2 morasses. Ann. Pure Appl. Log. 34(2), 171–208 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Zwicker, W., William S.: \({P_{\kappa }}{\lambda } \) combinatorics. I. Stationary coding sets rationalize the club filter. Axiomatic set theory (Boulder, Colo., 1983), pp. 243–259, Contemp. Math., 31, Amer. Math. Soc., Providence (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Polish  Academy of SciencesWarszawaPoland

Personalised recommendations