Archive for Mathematical Logic

, Volume 56, Issue 5–6, pp 507–521 | Cite as

Bounded low and high sets

  • Bernard A. Anderson
  • Barbara F. Csima
  • Karen M. LangeEmail author


Anderson and Csima (Notre Dame J Form Log 55(2):245–264, 2014) defined a jump operator, the bounded jump, with respect to bounded Turing (or weak truth table) reducibility. They showed that the bounded jump is closely related to the Ershov hierarchy and that it satisfies an analogue of Shoenfield jump inversion. We show that there are high bounded low sets and low bounded high sets. Thus, the information coded in the bounded jump is quite different from that of the standard jump. We also consider whether the analogue of the Jump Theorem holds for the bounded jump: do we have \(A \le _{bT}B\) if and only if \(A^b \le _1 B^b\)? We show the forward direction holds but not the reverse.


Bounded jump Bounded Turing degrees Weak truth table degrees High sets Low sets 

Mathematics Subject Classification

Primary 03D28 Secondary 03D30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, B., Csima, B.: A bounded jump for the bounded Turing degrees. Notre Dame J. Form. Log. 55(2), 245–264 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, B.A.: Automorphisms of the truth-table degrees are fixed on a cone. J. Symb. Log. 74(2), 679–688 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ash, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam (2000)zbMATHGoogle Scholar
  4. 4.
    Cooper, B.: Computability Theory. Chapman and Hall/CRC, Boca Raton (2004)zbMATHGoogle Scholar
  5. 5.
    Csima, B., Downey, R., Ng, K.M.: Limits on jump inversion for strong reducibilities. J. Symb. Log. 76(4), 1287–1296 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Downey, R., Greenberg, N.: A transfinite hierarchy of notions of lowness in the computably enumerable degrees, unifying classes, and natural definability. PreprintGoogle Scholar
  7. 7.
    Gerla, G.: Una generalizzazione della gerarchia di Ershov. Bolletino U.M.I 16–B(5), 765–778 (1979)zbMATHGoogle Scholar
  8. 8.
    Jockusch Jr., C.G., Shore, R.A.: Pseudo-jump operators II: transfinite iterations, hierarchies, and minimal covers. J. Symb. Log. 49, 1205–1236 (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mohrherr, J.: Density of a final segment of the truth-table degrees. Pac. J. Math. 115(2), 409–419 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mohrherr, J.: A refinement of low \(n\) and high \(n\) for the r.e. degrees. Z. Math. Logik Grundlag. Math. 32(1), 5–12 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  12. 12.
    Soare, R.I.: Computability Theory and Applications. Springer, Berlin (2016)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceGordon State CollegeBarnesvilleUSA
  2. 2.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.Department of MathematicsWellesley CollegeWellesleyUSA

Personalised recommendations